Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicdmN Structured version   Visualization version   Unicode version

Theorem dicdmN 36473
Description: Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicfn.l  |-  .<_  =  ( le `  K )
dicfn.a  |-  A  =  ( Atoms `  K )
dicfn.h  |-  H  =  ( LHyp `  K
)
dicfn.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicdmN  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  {
p  e.  A  |  -.  p  .<_  W }
)
Distinct variable groups:    .<_ , p    A, p    K, p    W, p
Allowed substitution hints:    H( p)    I( p)    V( p)

Proof of Theorem dicdmN
StepHypRef Expression
1 dicfn.l . . 3  |-  .<_  =  ( le `  K )
2 dicfn.a . . 3  |-  A  =  ( Atoms `  K )
3 dicfn.h . . 3  |-  H  =  ( LHyp `  K
)
4 dicfn.i . . 3  |-  I  =  ( ( DIsoC `  K
) `  W )
51, 2, 3, 4dicfnN 36472 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { p  e.  A  |  -.  p  .<_  W } )
6 fndm 5990 . 2  |-  ( I  Fn  { p  e.  A  |  -.  p  .<_  W }  ->  dom  I  =  { p  e.  A  |  -.  p  .<_  W } )
75, 6syl 17 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  dom  I  =  {
p  e.  A  |  -.  p  .<_  W }
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   class class class wbr 4653   dom cdm 5114    Fn wfn 5883   ` cfv 5888   lecple 15948   Atomscatm 34550   LHypclh 35270   DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-dic 36462
This theorem is referenced by:  dicvalrelN  36474
  Copyright terms: Public domain W3C validator