MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin0ss Structured version   Visualization version   Unicode version

Theorem difin0ss 3946
Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
difin0ss  |-  ( ( ( A  \  B
)  i^i  C )  =  (/)  ->  ( C  C_  A  ->  C  C_  B
) )

Proof of Theorem difin0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eq0 3929 . 2  |-  ( ( ( A  \  B
)  i^i  C )  =  (/)  <->  A. x  -.  x  e.  ( ( A  \  B )  i^i  C
) )
2 iman 440 . . . . . 6  |-  ( ( x  e.  C  -> 
( x  e.  A  ->  x  e.  B ) )  <->  -.  ( x  e.  C  /\  -.  (
x  e.  A  ->  x  e.  B )
) )
3 elin 3796 . . . . . . 7  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  ( x  e.  ( A  \  B
)  /\  x  e.  C ) )
4 eldif 3584 . . . . . . . 8  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
54anbi2ci 732 . . . . . . 7  |-  ( ( x  e.  ( A 
\  B )  /\  x  e.  C )  <->  ( x  e.  C  /\  ( x  e.  A  /\  -.  x  e.  B
) ) )
6 annim 441 . . . . . . . 8  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  -.  ( x  e.  A  ->  x  e.  B ) )
76anbi2i 730 . . . . . . 7  |-  ( ( x  e.  C  /\  ( x  e.  A  /\  -.  x  e.  B
) )  <->  ( x  e.  C  /\  -.  (
x  e.  A  ->  x  e.  B )
) )
83, 5, 73bitri 286 . . . . . 6  |-  ( x  e.  ( ( A 
\  B )  i^i 
C )  <->  ( x  e.  C  /\  -.  (
x  e.  A  ->  x  e.  B )
) )
92, 8xchbinxr 325 . . . . 5  |-  ( ( x  e.  C  -> 
( x  e.  A  ->  x  e.  B ) )  <->  -.  x  e.  ( ( A  \  B )  i^i  C
) )
10 ax-2 7 . . . . 5  |-  ( ( x  e.  C  -> 
( x  e.  A  ->  x  e.  B ) )  ->  ( (
x  e.  C  ->  x  e.  A )  ->  ( x  e.  C  ->  x  e.  B ) ) )
119, 10sylbir 225 . . . 4  |-  ( -.  x  e.  ( ( A  \  B )  i^i  C )  -> 
( ( x  e.  C  ->  x  e.  A )  ->  (
x  e.  C  ->  x  e.  B )
) )
1211al2imi 1743 . . 3  |-  ( A. x  -.  x  e.  ( ( A  \  B
)  i^i  C )  ->  ( A. x ( x  e.  C  ->  x  e.  A )  ->  A. x ( x  e.  C  ->  x  e.  B ) ) )
13 dfss2 3591 . . 3  |-  ( C 
C_  A  <->  A. x
( x  e.  C  ->  x  e.  A ) )
14 dfss2 3591 . . 3  |-  ( C 
C_  B  <->  A. x
( x  e.  C  ->  x  e.  B ) )
1512, 13, 143imtr4g 285 . 2  |-  ( A. x  -.  x  e.  ( ( A  \  B
)  i^i  C )  ->  ( C  C_  A  ->  C  C_  B )
)
161, 15sylbi 207 1  |-  ( ( ( A  \  B
)  i^i  C )  =  (/)  ->  ( C  C_  A  ->  C  C_  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  tz7.7  5749  tfi  7053  lebnumlem3  22762
  Copyright terms: Public domain W3C validator