| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difin0ss | Structured version Visualization version Unicode version | ||
| Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
| Ref | Expression |
|---|---|
| difin0ss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 3929 |
. 2
| |
| 2 | iman 440 |
. . . . . 6
| |
| 3 | elin 3796 |
. . . . . . 7
| |
| 4 | eldif 3584 |
. . . . . . . 8
| |
| 5 | 4 | anbi2ci 732 |
. . . . . . 7
|
| 6 | annim 441 |
. . . . . . . 8
| |
| 7 | 6 | anbi2i 730 |
. . . . . . 7
|
| 8 | 3, 5, 7 | 3bitri 286 |
. . . . . 6
|
| 9 | 2, 8 | xchbinxr 325 |
. . . . 5
|
| 10 | ax-2 7 |
. . . . 5
| |
| 11 | 9, 10 | sylbir 225 |
. . . 4
|
| 12 | 11 | al2imi 1743 |
. . 3
|
| 13 | dfss2 3591 |
. . 3
| |
| 14 | dfss2 3591 |
. . 3
| |
| 15 | 12, 13, 14 | 3imtr4g 285 |
. 2
|
| 16 | 1, 15 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 |
| This theorem is referenced by: tz7.7 5749 tfi 7053 lebnumlem3 22762 |
| Copyright terms: Public domain | W3C validator |