MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inssdif0 Structured version   Visualization version   Unicode version

Theorem inssdif0 3947
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
inssdif0  |-  ( ( A  i^i  B ) 
C_  C  <->  ( A  i^i  ( B  \  C
) )  =  (/) )

Proof of Theorem inssdif0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21imbi1i 339 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  <->  ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C ) )
3 iman 440 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C )  <->  -.  (
( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C ) )
42, 3bitri 264 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  <->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
5 eldif 3584 . . . . . 6  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
65anbi2i 730 . . . . 5  |-  ( ( x  e.  A  /\  x  e.  ( B  \  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
7 elin 3796 . . . . 5  |-  ( x  e.  ( A  i^i  ( B  \  C ) )  <->  ( x  e.  A  /\  x  e.  ( B  \  C
) ) )
8 anass 681 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
96, 7, 83bitr4ri 293 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  x  e.  ( A  i^i  ( B  \  C ) ) )
104, 9xchbinx 324 . . 3  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  <->  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
1110albii 1747 . 2  |-  ( A. x ( x  e.  ( A  i^i  B
)  ->  x  e.  C )  <->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
12 dfss2 3591 . 2  |-  ( ( A  i^i  B ) 
C_  C  <->  A. x
( x  e.  ( A  i^i  B )  ->  x  e.  C
) )
13 eq0 3929 . 2  |-  ( ( A  i^i  ( B 
\  C ) )  =  (/)  <->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
1411, 12, 133bitr4i 292 1  |-  ( ( A  i^i  B ) 
C_  C  <->  ( A  i^i  ( B  \  C
) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  disjdif  4040  inf3lem3  8527  ssfin4  9132  isnrm2  21162  1stccnp  21265  llycmpkgen2  21353  ufileu  21723  fclscf  21829  flimfnfcls  21832  inindif  29353  opnbnd  32320  diophrw  37322  setindtr  37591
  Copyright terms: Public domain W3C validator