| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfi | Structured version Visualization version Unicode version | ||
| Description: The Principle of
Transfinite Induction. Theorem 7.17 of [TakeutiZaring]
p. 39. This principle states that if See theorem tfindes 7062 or tfinds 7059 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| tfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifn 3733 |
. . . . . . . . 9
| |
| 2 | 1 | adantl 482 |
. . . . . . . 8
|
| 3 | eldifi 3732 |
. . . . . . . . . 10
| |
| 4 | onss 6990 |
. . . . . . . . . . . . 13
| |
| 5 | difin0ss 3946 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | syl5com 31 |
. . . . . . . . . . . 12
|
| 7 | 6 | imim1d 82 |
. . . . . . . . . . 11
|
| 8 | 7 | a2i 14 |
. . . . . . . . . 10
|
| 9 | 3, 8 | syl5 34 |
. . . . . . . . 9
|
| 10 | 9 | imp 445 |
. . . . . . . 8
|
| 11 | 2, 10 | mtod 189 |
. . . . . . 7
|
| 12 | 11 | ex 450 |
. . . . . 6
|
| 13 | 12 | ralimi2 2949 |
. . . . 5
|
| 14 | ralnex 2992 |
. . . . 5
| |
| 15 | 13, 14 | sylib 208 |
. . . 4
|
| 16 | ssdif0 3942 |
. . . . . 6
| |
| 17 | 16 | necon3bbii 2841 |
. . . . 5
|
| 18 | ordon 6982 |
. . . . . 6
| |
| 19 | difss 3737 |
. . . . . 6
| |
| 20 | tz7.5 5744 |
. . . . . 6
| |
| 21 | 18, 19, 20 | mp3an12 1414 |
. . . . 5
|
| 22 | 17, 21 | sylbi 207 |
. . . 4
|
| 23 | 15, 22 | nsyl2 142 |
. . 3
|
| 24 | 23 | anim2i 593 |
. 2
|
| 25 | eqss 3618 |
. 2
| |
| 26 | 24, 25 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
| This theorem is referenced by: tfis 7054 tfisg 31716 onsetrec 42451 |
| Copyright terms: Public domain | W3C validator |