| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrab2 | Structured version Visualization version Unicode version | ||
| Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
| Ref | Expression |
|---|---|
| inrab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2921 |
. . 3
| |
| 2 | abid1 2744 |
. . 3
| |
| 3 | 1, 2 | ineq12i 3812 |
. 2
|
| 4 | df-rab 2921 |
. . 3
| |
| 5 | inab 3895 |
. . . 4
| |
| 6 | elin 3796 |
. . . . . . 7
| |
| 7 | 6 | anbi1i 731 |
. . . . . 6
|
| 8 | an32 839 |
. . . . . 6
| |
| 9 | 7, 8 | bitri 264 |
. . . . 5
|
| 10 | 9 | abbii 2739 |
. . . 4
|
| 11 | 5, 10 | eqtr4i 2647 |
. . 3
|
| 12 | 4, 11 | eqtr4i 2647 |
. 2
|
| 13 | 3, 12 | eqtr4i 2647 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-in 3581 |
| This theorem is referenced by: iooval2 12208 fzval2 12329 smuval2 15204 smueqlem 15212 dfphi2 15479 ordtrest 21006 ordtrest2lem 21007 ordtrestNEW 29967 ordtrest2NEWlem 29968 itg2addnclem2 33462 dmatALTbas 42190 |
| Copyright terms: Public domain | W3C validator |