MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musum Structured version   Visualization version   Unicode version

Theorem musum 24917
Description: The sum of the Möbius function over the divisors of  N gives one if  N  =  1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv 24919. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
musum  |-  ( N  e.  NN  ->  sum_ k  e.  { n  e.  NN  |  n  ||  N } 
( mmu `  k
)  =  if ( N  =  1 ,  1 ,  0 ) )
Distinct variable group:    k, n, N

Proof of Theorem musum
Dummy variables  m  p  q  s  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . 8  |-  ( n  =  k  ->  (
mmu `  n )  =  ( mmu `  k ) )
21neeq1d 2853 . . . . . . 7  |-  ( n  =  k  ->  (
( mmu `  n
)  =/=  0  <->  (
mmu `  k )  =/=  0 ) )
3 breq1 4656 . . . . . . 7  |-  ( n  =  k  ->  (
n  ||  N  <->  k  ||  N ) )
42, 3anbi12d 747 . . . . . 6  |-  ( n  =  k  ->  (
( ( mmu `  n )  =/=  0  /\  n  ||  N )  <-> 
( ( mmu `  k )  =/=  0  /\  k  ||  N ) ) )
54elrab 3363 . . . . 5  |-  ( k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  <->  ( k  e.  NN  /\  ( ( mmu `  k )  =/=  0  /\  k  ||  N ) ) )
6 muval2 24860 . . . . . 6  |-  ( ( k  e.  NN  /\  ( mmu `  k )  =/=  0 )  -> 
( mmu `  k
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  k } ) ) )
76adantrr 753 . . . . 5  |-  ( ( k  e.  NN  /\  ( ( mmu `  k )  =/=  0  /\  k  ||  N ) )  ->  ( mmu `  k )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  k } ) ) )
85, 7sylbi 207 . . . 4  |-  ( k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  ->  ( mmu `  k )  =  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  k } ) ) )
98adantl 482 . . 3  |-  ( ( N  e.  NN  /\  k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  ( mmu `  k )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  k } ) ) )
109sumeq2dv 14433 . 2  |-  ( N  e.  NN  ->  sum_ k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  ( mmu `  k )  =  sum_ k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  k } ) ) )
11 simpr 477 . . . . 5  |-  ( ( ( mmu `  n
)  =/=  0  /\  n  ||  N )  ->  n  ||  N
)
1211a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  NN )  ->  ( ( ( mmu `  n )  =/=  0  /\  n  ||  N )  ->  n  ||  N
) )
1312ss2rabdv 3683 . . 3  |-  ( N  e.  NN  ->  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  C_  { n  e.  NN  |  n  ||  N } )
14 ssrab2 3687 . . . . . 6  |-  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  C_  NN
15 simpr 477 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  k  e.  {
n  e.  NN  | 
( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )
1614, 15sseldi 3601 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  k  e.  NN )
17 mucl 24867 . . . . 5  |-  ( k  e.  NN  ->  (
mmu `  k )  e.  ZZ )
1816, 17syl 17 . . . 4  |-  ( ( N  e.  NN  /\  k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  ( mmu `  k )  e.  ZZ )
1918zcnd 11483 . . 3  |-  ( ( N  e.  NN  /\  k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  ( mmu `  k )  e.  CC )
20 difrab 3901 . . . . . . 7  |-  ( { n  e.  NN  |  n  ||  N }  \  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  =  {
n  e.  NN  | 
( n  ||  N  /\  -.  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) ) }
21 pm3.21 464 . . . . . . . . . . 11  |-  ( n 
||  N  ->  (
( mmu `  n
)  =/=  0  -> 
( ( mmu `  n )  =/=  0  /\  n  ||  N ) ) )
2221necon1bd 2812 . . . . . . . . . 10  |-  ( n 
||  N  ->  ( -.  ( ( mmu `  n )  =/=  0  /\  n  ||  N )  ->  ( mmu `  n )  =  0 ) )
2322imp 445 . . . . . . . . 9  |-  ( ( n  ||  N  /\  -.  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) )  ->  ( mmu `  n )  =  0 )
2423a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( n  ||  N  /\  -.  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) )  ->  ( mmu `  n )  =  0 ) )
2524ss2rabi 3684 . . . . . . 7  |-  { n  e.  NN  |  ( n 
||  N  /\  -.  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) ) }  C_  { n  e.  NN  |  ( mmu `  n )  =  0 }
2620, 25eqsstri 3635 . . . . . 6  |-  ( { n  e.  NN  |  n  ||  N }  \  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  C_  { n  e.  NN  |  ( mmu `  n )  =  0 }
2726sseli 3599 . . . . 5  |-  ( k  e.  ( { n  e.  NN  |  n  ||  N }  \  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  k  e.  {
n  e.  NN  | 
( mmu `  n
)  =  0 } )
281eqeq1d 2624 . . . . . . 7  |-  ( n  =  k  ->  (
( mmu `  n
)  =  0  <->  (
mmu `  k )  =  0 ) )
2928elrab 3363 . . . . . 6  |-  ( k  e.  { n  e.  NN  |  ( mmu `  n )  =  0 }  <->  ( k  e.  NN  /\  ( mmu `  k )  =  0 ) )
3029simprbi 480 . . . . 5  |-  ( k  e.  { n  e.  NN  |  ( mmu `  n )  =  0 }  ->  ( mmu `  k )  =  0 )
3127, 30syl 17 . . . 4  |-  ( k  e.  ( { n  e.  NN  |  n  ||  N }  \  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  ( mmu `  k )  =  0 )
3231adantl 482 . . 3  |-  ( ( N  e.  NN  /\  k  e.  ( {
n  e.  NN  |  n  ||  N }  \  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } ) )  -> 
( mmu `  k
)  =  0 )
33 fzfid 12772 . . . 4  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
34 dvdsssfz1 15040 . . . 4  |-  ( N  e.  NN  ->  { n  e.  NN  |  n  ||  N }  C_  ( 1 ... N ) )
35 ssfi 8180 . . . 4  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { n  e.  NN  |  n  ||  N }  C_  ( 1 ... N
) )  ->  { n  e.  NN  |  n  ||  N }  e.  Fin )
3633, 34, 35syl2anc 693 . . 3  |-  ( N  e.  NN  ->  { n  e.  NN  |  n  ||  N }  e.  Fin )
3713, 19, 32, 36fsumss 14456 . 2  |-  ( N  e.  NN  ->  sum_ k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  ( mmu `  k )  =  sum_ k  e.  { n  e.  NN  |  n  ||  N }  ( mmu `  k ) )
38 fveq2 6191 . . . . 5  |-  ( x  =  { p  e. 
Prime  |  p  ||  k }  ->  ( # `  x
)  =  ( # `  { p  e.  Prime  |  p  ||  k } ) )
3938oveq2d 6666 . . . 4  |-  ( x  =  { p  e. 
Prime  |  p  ||  k }  ->  ( -u 1 ^ ( # `  x
) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  k } ) ) )
40 ssfi 8180 . . . . 5  |-  ( ( { n  e.  NN  |  n  ||  N }  e.  Fin  /\  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  C_  { n  e.  NN  |  n  ||  N } )  ->  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  e.  Fin )
4136, 13, 40syl2anc 693 . . . 4  |-  ( N  e.  NN  ->  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  e.  Fin )
42 eqid 2622 . . . . 5  |-  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  =  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }
43 eqid 2622 . . . . 5  |-  ( m  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  |->  { p  e.  Prime  |  p 
||  m } )  =  ( m  e. 
{ n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  |->  { p  e. 
Prime  |  p  ||  m } )
44 oveq1 6657 . . . . . . . 8  |-  ( q  =  p  ->  (
q  pCnt  x )  =  ( p  pCnt  x ) )
4544cbvmptv 4750 . . . . . . 7  |-  ( q  e.  Prime  |->  ( q 
pCnt  x ) )  =  ( p  e.  Prime  |->  ( p  pCnt  x ) )
46 oveq2 6658 . . . . . . . 8  |-  ( x  =  m  ->  (
p  pCnt  x )  =  ( p  pCnt  m ) )
4746mpteq2dv 4745 . . . . . . 7  |-  ( x  =  m  ->  (
p  e.  Prime  |->  ( p 
pCnt  x ) )  =  ( p  e.  Prime  |->  ( p  pCnt  m ) ) )
4845, 47syl5eq 2668 . . . . . 6  |-  ( x  =  m  ->  (
q  e.  Prime  |->  ( q 
pCnt  x ) )  =  ( p  e.  Prime  |->  ( p  pCnt  m ) ) )
4948cbvmptv 4750 . . . . 5  |-  ( x  e.  NN  |->  ( q  e.  Prime  |->  ( q 
pCnt  x ) ) )  =  ( m  e.  NN  |->  ( p  e. 
Prime  |->  ( p  pCnt  m ) ) )
5042, 43, 49sqff1o 24908 . . . 4  |-  ( N  e.  NN  ->  (
m  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  |->  { p  e.  Prime  |  p 
||  m } ) : { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } -1-1-onto-> ~P { p  e. 
Prime  |  p  ||  N } )
51 breq2 4657 . . . . . . 7  |-  ( m  =  k  ->  (
p  ||  m  <->  p  ||  k
) )
5251rabbidv 3189 . . . . . 6  |-  ( m  =  k  ->  { p  e.  Prime  |  p  ||  m }  =  {
p  e.  Prime  |  p 
||  k } )
53 zex 11386 . . . . . . . 8  |-  ZZ  e.  _V
54 prmz 15389 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  ZZ )
5554ssriv 3607 . . . . . . . 8  |-  Prime  C_  ZZ
5653, 55ssexi 4803 . . . . . . 7  |-  Prime  e.  _V
5756rabex 4813 . . . . . 6  |-  { p  e.  Prime  |  p  ||  k }  e.  _V
5852, 43, 57fvmpt 6282 . . . . 5  |-  ( k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  ->  ( ( m  e.  {
n  e.  NN  | 
( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  |->  { p  e. 
Prime  |  p  ||  m } ) `  k
)  =  { p  e.  Prime  |  p  ||  k } )
5958adantl 482 . . . 4  |-  ( ( N  e.  NN  /\  k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) } )  ->  ( ( m  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  |->  { p  e.  Prime  |  p 
||  m } ) `
 k )  =  { p  e.  Prime  |  p  ||  k } )
60 neg1cn 11124 . . . . 5  |-  -u 1  e.  CC
61 prmdvdsfi 24833 . . . . . . 7  |-  ( N  e.  NN  ->  { p  e.  Prime  |  p  ||  N }  e.  Fin )
62 elpwi 4168 . . . . . . 7  |-  ( x  e.  ~P { p  e.  Prime  |  p  ||  N }  ->  x  C_  { p  e.  Prime  |  p 
||  N } )
63 ssfi 8180 . . . . . . 7  |-  ( ( { p  e.  Prime  |  p  ||  N }  e.  Fin  /\  x  C_  { p  e.  Prime  |  p 
||  N } )  ->  x  e.  Fin )
6461, 62, 63syl2an 494 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  x  e.  Fin )
65 hashcl 13147 . . . . . 6  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
6664, 65syl 17 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 x )  e. 
NN0 )
67 expcl 12878 . . . . 5  |-  ( (
-u 1  e.  CC  /\  ( # `  x
)  e.  NN0 )  ->  ( -u 1 ^ ( # `  x
) )  e.  CC )
6860, 66, 67sylancr 695 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( -u 1 ^ ( # `  x ) )  e.  CC )
6939, 41, 50, 59, 68fsumf1o 14454 . . 3  |-  ( N  e.  NN  ->  sum_ x  e.  ~P  { p  e. 
Prime  |  p  ||  N }  ( -u 1 ^ ( # `  x
) )  =  sum_ k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  k } ) ) )
70 fzfid 12772 . . . . 5  |-  ( N  e.  NN  ->  (
0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) )  e.  Fin )
7161adantr 481 . . . . . . 7  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  { p  e.  Prime  |  p  ||  N }  e.  Fin )
72 pwfi 8261 . . . . . . 7  |-  ( { p  e.  Prime  |  p 
||  N }  e.  Fin 
<->  ~P { p  e. 
Prime  |  p  ||  N }  e.  Fin )
7371, 72sylib 208 . . . . . 6  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  ~P { p  e.  Prime  |  p  ||  N }  e.  Fin )
74 ssrab2 3687 . . . . . 6  |-  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `
 s )  =  z }  C_  ~P { p  e.  Prime  |  p  ||  N }
75 ssfi 8180 . . . . . 6  |-  ( ( ~P { p  e. 
Prime  |  p  ||  N }  e.  Fin  /\  {
s  e.  ~P {
p  e.  Prime  |  p 
||  N }  | 
( # `  s )  =  z }  C_  ~P { p  e.  Prime  |  p  ||  N }
)  ->  { s  e.  ~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  e.  Fin )
7673, 74, 75sylancl 694 . . . . 5  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `
 s )  =  z }  e.  Fin )
77 simprr 796 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } )
78 fveq2 6191 . . . . . . . . . . 11  |-  ( s  =  x  ->  ( # `
 s )  =  ( # `  x
) )
7978eqeq1d 2624 . . . . . . . . . 10  |-  ( s  =  x  ->  (
( # `  s )  =  z  <->  ( # `  x
)  =  z ) )
8079elrab 3363 . . . . . . . . 9  |-  ( x  e.  { s  e. 
~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  <-> 
( x  e.  ~P { p  e.  Prime  |  p  ||  N }  /\  ( # `  x
)  =  z ) )
8180simprbi 480 . . . . . . . 8  |-  ( x  e.  { s  e. 
~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ->  ( # `  x
)  =  z )
8277, 81syl 17 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  ( # `
 x )  =  z )
8382ralrimivva 2971 . . . . . 6  |-  ( N  e.  NN  ->  A. z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) A. x  e.  { s  e.  ~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( # `  x
)  =  z )
84 invdisj 4638 . . . . . 6  |-  ( A. z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) A. x  e. 
{ s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( # `  x
)  =  z  -> Disj  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) { s  e. 
~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z } )
8583, 84syl 17 . . . . 5  |-  ( N  e.  NN  -> Disj  z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) { s  e.  ~P {
p  e.  Prime  |  p 
||  N }  | 
( # `  s )  =  z } )
8661adantr 481 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  { p  e.  Prime  |  p  ||  N }  e.  Fin )
8774, 77sseldi 3601 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  x  e.  ~P { p  e. 
Prime  |  p  ||  N } )
8887, 62syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  x  C_ 
{ p  e.  Prime  |  p  ||  N }
)
8986, 88, 63syl2anc 693 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  x  e.  Fin )
9089, 65syl 17 . . . . . 6  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  ( # `
 x )  e. 
NN0 )
9160, 90, 67sylancr 695 . . . . 5  |-  ( ( N  e.  NN  /\  ( z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )  ->  ( -u 1 ^ ( # `  x ) )  e.  CC )
9270, 76, 85, 91fsumiun 14553 . . . 4  |-  ( N  e.  NN  ->  sum_ x  e.  U_  z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `
 s )  =  z }  ( -u
1 ^ ( # `  x ) )  = 
sum_ z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) sum_ x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( -u 1 ^ ( # `  x
) ) )
9361adantr 481 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  { p  e.  Prime  |  p  ||  N }  e.  Fin )
94 elpwi 4168 . . . . . . . . . . . . 13  |-  ( s  e.  ~P { p  e.  Prime  |  p  ||  N }  ->  s  C_  { p  e.  Prime  |  p 
||  N } )
9594adantl 482 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  s  C_ 
{ p  e.  Prime  |  p  ||  N }
)
96 ssdomg 8001 . . . . . . . . . . . 12  |-  ( { p  e.  Prime  |  p 
||  N }  e.  Fin  ->  ( s  C_  { p  e.  Prime  |  p 
||  N }  ->  s  ~<_  { p  e.  Prime  |  p  ||  N }
) )
9793, 95, 96sylc 65 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  s  ~<_  { p  e.  Prime  |  p  ||  N }
)
98 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( { p  e.  Prime  |  p  ||  N }  e.  Fin  /\  s  C_  { p  e.  Prime  |  p 
||  N } )  ->  s  e.  Fin )
9961, 94, 98syl2an 494 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  s  e.  Fin )
100 hashdom 13168 . . . . . . . . . . . 12  |-  ( ( s  e.  Fin  /\  { p  e.  Prime  |  p 
||  N }  e.  Fin )  ->  ( (
# `  s )  <_  ( # `  {
p  e.  Prime  |  p 
||  N } )  <-> 
s  ~<_  { p  e. 
Prime  |  p  ||  N } ) )
10199, 93, 100syl2anc 693 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  (
( # `  s )  <_  ( # `  {
p  e.  Prime  |  p 
||  N } )  <-> 
s  ~<_  { p  e. 
Prime  |  p  ||  N } ) )
10297, 101mpbird 247 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 s )  <_ 
( # `  { p  e.  Prime  |  p  ||  N } ) )
103 hashcl 13147 . . . . . . . . . . . . 13  |-  ( s  e.  Fin  ->  ( # `
 s )  e. 
NN0 )
10499, 103syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 s )  e. 
NN0 )
105 nn0uz 11722 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
106104, 105syl6eleq 2711 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 s )  e.  ( ZZ>= `  0 )
)
107 hashcl 13147 . . . . . . . . . . . . . 14  |-  ( { p  e.  Prime  |  p 
||  N }  e.  Fin  ->  ( # `  {
p  e.  Prime  |  p 
||  N } )  e.  NN0 )
10861, 107syl 17 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( # `
 { p  e. 
Prime  |  p  ||  N } )  e.  NN0 )
109108adantr 481 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 { p  e. 
Prime  |  p  ||  N } )  e.  NN0 )
110109nn0zd 11480 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 { p  e. 
Prime  |  p  ||  N } )  e.  ZZ )
111 elfz5 12334 . . . . . . . . . . 11  |-  ( ( ( # `  s
)  e.  ( ZZ>= ` 
0 )  /\  ( # `
 { p  e. 
Prime  |  p  ||  N } )  e.  ZZ )  ->  ( ( # `  s )  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) )  <->  ( # `  s
)  <_  ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )
112106, 110, 111syl2anc 693 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  (
( # `  s )  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) )  <->  ( # `  s
)  <_  ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )
113102, 112mpbird 247 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 s )  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) )
114 eqidd 2623 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  ( # `
 s )  =  ( # `  s
) )
115 eqeq2 2633 . . . . . . . . . 10  |-  ( z  =  ( # `  s
)  ->  ( ( # `
 s )  =  z  <->  ( # `  s
)  =  ( # `  s ) ) )
116115rspcev 3309 . . . . . . . . 9  |-  ( ( ( # `  s
)  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) )  /\  ( # `  s )  =  (
# `  s )
)  ->  E. z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) (
# `  s )  =  z )
117113, 114, 116syl2anc 693 . . . . . . . 8  |-  ( ( N  e.  NN  /\  s  e.  ~P { p  e.  Prime  |  p  ||  N } )  ->  E. z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) (
# `  s )  =  z )
118117ralrimiva 2966 . . . . . . 7  |-  ( N  e.  NN  ->  A. s  e.  ~P  { p  e. 
Prime  |  p  ||  N } E. z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) ( # `  s )  =  z )
119 rabid2 3118 . . . . . . 7  |-  ( ~P { p  e.  Prime  |  p  ||  N }  =  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  E. z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) ( # `  s )  =  z }  <->  A. s  e.  ~P  { p  e.  Prime  |  p 
||  N } E. z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) ( # `  s
)  =  z )
120118, 119sylibr 224 . . . . . 6  |-  ( N  e.  NN  ->  ~P { p  e.  Prime  |  p  ||  N }  =  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  E. z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) ( # `  s )  =  z } )
121 iunrab 4567 . . . . . 6  |-  U_ z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) { s  e.  ~P {
p  e.  Prime  |  p 
||  N }  | 
( # `  s )  =  z }  =  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  E. z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) ( # `  s )  =  z }
122120, 121syl6reqr 2675 . . . . 5  |-  ( N  e.  NN  ->  U_ z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) { s  e.  ~P {
p  e.  Prime  |  p 
||  N }  | 
( # `  s )  =  z }  =  ~P { p  e.  Prime  |  p  ||  N }
)
123122sumeq1d 14431 . . . 4  |-  ( N  e.  NN  ->  sum_ x  e.  U_  z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `
 s )  =  z }  ( -u
1 ^ ( # `  x ) )  = 
sum_ x  e.  ~P  { p  e.  Prime  |  p 
||  N }  ( -u 1 ^ ( # `  x ) ) )
124 elfznn0 12433 . . . . . . . . . 10  |-  ( z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) )  ->  z  e.  NN0 )
125124adantl 482 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  z  e.  NN0 )
126 expcl 12878 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  z  e.  NN0 )  ->  ( -u 1 ^ z )  e.  CC )
12760, 125, 126sylancr 695 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  ( -u 1 ^ z )  e.  CC )
128 fsumconst 14522 . . . . . . . 8  |-  ( ( { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  e.  Fin  /\  ( -u 1 ^ z )  e.  CC )  ->  sum_ x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `
 s )  =  z }  ( -u
1 ^ z )  =  ( ( # `  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } )  x.  ( -u
1 ^ z ) ) )
12976, 127, 128syl2anc 693 . . . . . . 7  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  sum_ x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( -u 1 ^ z )  =  ( ( # `  {
s  e.  ~P {
p  e.  Prime  |  p 
||  N }  | 
( # `  s )  =  z } )  x.  ( -u 1 ^ z ) ) )
13081adantl 482 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } )  ->  ( # `  x
)  =  z )
131130oveq2d 6666 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  /\  x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } )  ->  ( -u 1 ^ ( # `  x
) )  =  (
-u 1 ^ z
) )
132131sumeq2dv 14433 . . . . . . 7  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  sum_ x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( -u 1 ^ ( # `  x
) )  =  sum_ x  e.  { s  e. 
~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( -u 1 ^ z ) )
133 elfzelz 12342 . . . . . . . . 9  |-  ( z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) )  ->  z  e.  ZZ )
134 hashbc 13237 . . . . . . . . 9  |-  ( ( { p  e.  Prime  |  p  ||  N }  e.  Fin  /\  z  e.  ZZ )  ->  (
( # `  { p  e.  Prime  |  p  ||  N } )  _C  z
)  =  ( # `  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )
13561, 133, 134syl2an 494 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  (
( # `  { p  e.  Prime  |  p  ||  N } )  _C  z
)  =  ( # `  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z } ) )
136135oveq1d 6665 . . . . . . 7  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  (
( ( # `  {
p  e.  Prime  |  p 
||  N } )  _C  z )  x.  ( -u 1 ^ z ) )  =  ( ( # `  {
s  e.  ~P {
p  e.  Prime  |  p 
||  N }  | 
( # `  s )  =  z } )  x.  ( -u 1 ^ z ) ) )
137129, 132, 1363eqtr4d 2666 . . . . . 6  |-  ( ( N  e.  NN  /\  z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) )  ->  sum_ x  e.  { s  e.  ~P { p  e.  Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( -u 1 ^ ( # `  x
) )  =  ( ( ( # `  {
p  e.  Prime  |  p 
||  N } )  _C  z )  x.  ( -u 1 ^ z ) ) )
138137sumeq2dv 14433 . . . . 5  |-  ( N  e.  NN  ->  sum_ z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) sum_ x  e.  { s  e. 
~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( -u 1 ^ ( # `  x
) )  =  sum_ z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) ( ( (
# `  { p  e.  Prime  |  p  ||  N } )  _C  z
)  x.  ( -u
1 ^ z ) ) )
139 1pneg1e0 11129 . . . . . . 7  |-  ( 1  +  -u 1 )  =  0
140139oveq1i 6660 . . . . . 6  |-  ( ( 1  +  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  N }
) )  =  ( 0 ^ ( # `  { p  e.  Prime  |  p  ||  N }
) )
141 binom1p 14563 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  ( # `  {
p  e.  Prime  |  p 
||  N } )  e.  NN0 )  -> 
( ( 1  + 
-u 1 ) ^
( # `  { p  e.  Prime  |  p  ||  N } ) )  = 
sum_ z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) ( ( ( # `  {
p  e.  Prime  |  p 
||  N } )  _C  z )  x.  ( -u 1 ^ z ) ) )
14260, 108, 141sylancr 695 . . . . . 6  |-  ( N  e.  NN  ->  (
( 1  +  -u
1 ) ^ ( # `
 { p  e. 
Prime  |  p  ||  N } ) )  = 
sum_ z  e.  ( 0 ... ( # `  { p  e.  Prime  |  p  ||  N }
) ) ( ( ( # `  {
p  e.  Prime  |  p 
||  N } )  _C  z )  x.  ( -u 1 ^ z ) ) )
143140, 142syl5eqr 2670 . . . . 5  |-  ( N  e.  NN  ->  (
0 ^ ( # `  { p  e.  Prime  |  p  ||  N }
) )  =  sum_ z  e.  ( 0 ... ( # `  {
p  e.  Prime  |  p 
||  N } ) ) ( ( (
# `  { p  e.  Prime  |  p  ||  N } )  _C  z
)  x.  ( -u
1 ^ z ) ) )
144 eqeq2 2633 . . . . . 6  |-  ( 1  =  if ( N  =  1 ,  1 ,  0 )  -> 
( ( 0 ^ ( # `  {
p  e.  Prime  |  p 
||  N } ) )  =  1  <->  (
0 ^ ( # `  { p  e.  Prime  |  p  ||  N }
) )  =  if ( N  =  1 ,  1 ,  0 ) ) )
145 eqeq2 2633 . . . . . 6  |-  ( 0  =  if ( N  =  1 ,  1 ,  0 )  -> 
( ( 0 ^ ( # `  {
p  e.  Prime  |  p 
||  N } ) )  =  0  <->  (
0 ^ ( # `  { p  e.  Prime  |  p  ||  N }
) )  =  if ( N  =  1 ,  1 ,  0 ) ) )
146 nprmdvds1 15418 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
147 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  N  =  1 )
148147breq2d 4665 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  ( p  ||  N 
<->  p  ||  1 ) )
149148notbid 308 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  ( -.  p  ||  N  <->  -.  p  ||  1
) )
150146, 149syl5ibr 236 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  ( p  e. 
Prime  ->  -.  p  ||  N
) )
151150ralrimiv 2965 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  A. p  e.  Prime  -.  p  ||  N )
152 rabeq0 3957 . . . . . . . . . . 11  |-  ( { p  e.  Prime  |  p 
||  N }  =  (/)  <->  A. p  e.  Prime  -.  p  ||  N )
153151, 152sylibr 224 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  { p  e. 
Prime  |  p  ||  N }  =  (/) )
154153fveq2d 6195 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  ( # `  {
p  e.  Prime  |  p 
||  N } )  =  ( # `  (/) ) )
155 hash0 13158 . . . . . . . . 9  |-  ( # `  (/) )  =  0
156154, 155syl6eq 2672 . . . . . . . 8  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  ( # `  {
p  e.  Prime  |  p 
||  N } )  =  0 )
157156oveq2d 6666 . . . . . . 7  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  ( 0 ^ ( # `  {
p  e.  Prime  |  p 
||  N } ) )  =  ( 0 ^ 0 ) )
158 0exp0e1 12865 . . . . . . 7  |-  ( 0 ^ 0 )  =  1
159157, 158syl6eq 2672 . . . . . 6  |-  ( ( N  e.  NN  /\  N  =  1 )  ->  ( 0 ^ ( # `  {
p  e.  Prime  |  p 
||  N } ) )  =  1 )
160 df-ne 2795 . . . . . . . . . . 11  |-  ( N  =/=  1  <->  -.  N  =  1 )
161 eluz2b3 11762 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
162161biimpri 218 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  N  =/=  1 )  ->  N  e.  ( ZZ>= ` 
2 ) )
163160, 162sylan2br 493 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  N  e.  ( ZZ>= `  2 )
)
164 exprmfct 15416 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  N
)
165163, 164syl 17 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  E. p  e.  Prime  p  ||  N
)
166 rabn0 3958 . . . . . . . . 9  |-  ( { p  e.  Prime  |  p 
||  N }  =/=  (/)  <->  E. p  e.  Prime  p  ||  N )
167165, 166sylibr 224 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  { p  e.  Prime  |  p  ||  N }  =/=  (/) )
16861adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  { p  e.  Prime  |  p  ||  N }  e.  Fin )
169 hashnncl 13157 . . . . . . . . 9  |-  ( { p  e.  Prime  |  p 
||  N }  e.  Fin  ->  ( ( # `  { p  e.  Prime  |  p  ||  N }
)  e.  NN  <->  { p  e.  Prime  |  p  ||  N }  =/=  (/) ) )
170168, 169syl 17 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  ( ( # `
 { p  e. 
Prime  |  p  ||  N } )  e.  NN  <->  { p  e.  Prime  |  p 
||  N }  =/=  (/) ) )
171167, 170mpbird 247 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  ( # `  {
p  e.  Prime  |  p 
||  N } )  e.  NN )
1721710expd 13024 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  N  =  1
)  ->  ( 0 ^ ( # `  {
p  e.  Prime  |  p 
||  N } ) )  =  0 )
173144, 145, 159, 172ifbothda 4123 . . . . 5  |-  ( N  e.  NN  ->  (
0 ^ ( # `  { p  e.  Prime  |  p  ||  N }
) )  =  if ( N  =  1 ,  1 ,  0 ) )
174138, 143, 1733eqtr2d 2662 . . . 4  |-  ( N  e.  NN  ->  sum_ z  e.  ( 0 ... ( # `
 { p  e. 
Prime  |  p  ||  N } ) ) sum_ x  e.  { s  e. 
~P { p  e. 
Prime  |  p  ||  N }  |  ( # `  s
)  =  z }  ( -u 1 ^ ( # `  x
) )  =  if ( N  =  1 ,  1 ,  0 ) )
17592, 123, 1743eqtr3d 2664 . . 3  |-  ( N  e.  NN  ->  sum_ x  e.  ~P  { p  e. 
Prime  |  p  ||  N }  ( -u 1 ^ ( # `  x
) )  =  if ( N  =  1 ,  1 ,  0 ) )
17669, 175eqtr3d 2658 . 2  |-  ( N  e.  NN  ->  sum_ k  e.  { n  e.  NN  |  ( ( mmu `  n )  =/=  0  /\  n  ||  N ) }  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  k } ) )  =  if ( N  =  1 ,  1 ,  0 ) )
17710, 37, 1763eqtr3d 2664 1  |-  ( N  e.  NN  ->  sum_ k  e.  { n  e.  NN  |  n  ||  N } 
( mmu `  k
)  =  if ( N  =  1 ,  1 ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ~<_ cdom 7953   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075   -ucneg 10267   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860    _C cbc 13089   #chash 13117   sum_csu 14416    || cdvds 14983   Primecprime 15385    pCnt cpc 15541   mmucmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-mu 24827
This theorem is referenced by:  musumsum  24918  muinv  24919
  Copyright terms: Public domain W3C validator