MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirtr Structured version   Visualization version   Unicode version

Theorem dirtr 17236
Description: A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirtr  |-  ( ( ( R  e.  DirRel  /\  C  e.  V )  /\  ( A R B  /\  B R C ) )  ->  A R C )

Proof of Theorem dirtr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldir 17233 . . . . 5  |-  ( R  e.  DirRel  ->  Rel  R )
2 brrelex 5156 . . . . . . 7  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
32ex 450 . . . . . 6  |-  ( Rel 
R  ->  ( A R B  ->  A  e. 
_V ) )
4 brrelex 5156 . . . . . . 7  |-  ( ( Rel  R  /\  B R C )  ->  B  e.  _V )
54ex 450 . . . . . 6  |-  ( Rel 
R  ->  ( B R C  ->  B  e. 
_V ) )
63, 5anim12d 586 . . . . 5  |-  ( Rel 
R  ->  ( ( A R B  /\  B R C )  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
71, 6syl 17 . . . 4  |-  ( R  e.  DirRel  ->  ( ( A R B  /\  B R C )  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
8 eqid 2622 . . . . . . . . . . . 12  |-  U. U. R  =  U. U. R
98isdir 17232 . . . . . . . . . . 11  |-  ( R  e.  DirRel  ->  ( R  e. 
DirRel 
<->  ( ( Rel  R  /\  (  _I  |`  U. U. R )  C_  R
)  /\  ( ( R  o.  R )  C_  R  /\  ( U. U. R  X.  U. U. R )  C_  ( `' R  o.  R
) ) ) ) )
109ibi 256 . . . . . . . . . 10  |-  ( R  e.  DirRel  ->  ( ( Rel 
R  /\  (  _I  |` 
U. U. R )  C_  R )  /\  (
( R  o.  R
)  C_  R  /\  ( U. U. R  X.  U.
U. R )  C_  ( `' R  o.  R
) ) ) )
1110simprd 479 . . . . . . . . 9  |-  ( R  e.  DirRel  ->  ( ( R  o.  R )  C_  R  /\  ( U. U. R  X.  U. U. R
)  C_  ( `' R  o.  R )
) )
1211simpld 475 . . . . . . . 8  |-  ( R  e.  DirRel  ->  ( R  o.  R )  C_  R
)
13 cotr 5508 . . . . . . . 8  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
1412, 13sylib 208 . . . . . . 7  |-  ( R  e.  DirRel  ->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
15 breq12 4658 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x R y  <-> 
A R B ) )
16153adant3 1081 . . . . . . . . . 10  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x R y  <-> 
A R B ) )
17 breq12 4658 . . . . . . . . . . 11  |-  ( ( y  =  B  /\  z  =  C )  ->  ( y R z  <-> 
B R C ) )
18173adant1 1079 . . . . . . . . . 10  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( y R z  <-> 
B R C ) )
1916, 18anbi12d 747 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( x R y  /\  y R z )  <->  ( A R B  /\  B R C ) ) )
20 breq12 4658 . . . . . . . . . 10  |-  ( ( x  =  A  /\  z  =  C )  ->  ( x R z  <-> 
A R C ) )
21203adant2 1080 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x R z  <-> 
A R C ) )
2219, 21imbi12d 334 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( ( x R y  /\  y R z )  ->  x R z )  <->  ( ( A R B  /\  B R C )  ->  A R C ) ) )
2322spc3gv 3298 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  V )  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  -> 
( ( A R B  /\  B R C )  ->  A R C ) ) )
2414, 23syl5 34 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  V )  ->  ( R  e.  DirRel  ->  (
( A R B  /\  B R C )  ->  A R C ) ) )
25243expia 1267 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( C  e.  V  ->  ( R  e.  DirRel  -> 
( ( A R B  /\  B R C )  ->  A R C ) ) ) )
2625com4t 93 . . . 4  |-  ( R  e.  DirRel  ->  ( ( A R B  /\  B R C )  ->  (
( A  e.  _V  /\  B  e.  _V )  ->  ( C  e.  V  ->  A R C ) ) ) )
277, 26mpdd 43 . . 3  |-  ( R  e.  DirRel  ->  ( ( A R B  /\  B R C )  ->  ( C  e.  V  ->  A R C ) ) )
2827imp31 448 . 2  |-  ( ( ( R  e.  DirRel  /\  ( A R B  /\  B R C ) )  /\  C  e.  V )  ->  A R C )
2928an32s 846 1  |-  ( ( ( R  e.  DirRel  /\  C  e.  V )  /\  ( A R B  /\  B R C ) )  ->  A R C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   Rel wrel 5119   DirRelcdir 17228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-res 5126  df-dir 17230
This theorem is referenced by:  tailfb  32372
  Copyright terms: Public domain W3C validator