| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dirge | Structured version Visualization version Unicode version | ||
| Description: For any two elements of a directed set, there exists a third element greater than or equal to both. (Note that this does not say that the two elements have a least upper bound.) (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| dirge.1 |
|
| Ref | Expression |
|---|---|
| dirge |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dirge.1 |
. . . . . . 7
| |
| 2 | dirdm 17234 |
. . . . . . 7
| |
| 3 | 1, 2 | syl5eq 2668 |
. . . . . 6
|
| 4 | 3 | eleq2d 2687 |
. . . . 5
|
| 5 | 3 | eleq2d 2687 |
. . . . 5
|
| 6 | 4, 5 | anbi12d 747 |
. . . 4
|
| 7 | eqid 2622 |
. . . . . . . . 9
| |
| 8 | 7 | isdir 17232 |
. . . . . . . 8
|
| 9 | 8 | ibi 256 |
. . . . . . 7
|
| 10 | 9 | simprrd 797 |
. . . . . 6
|
| 11 | codir 5516 |
. . . . . 6
| |
| 12 | 10, 11 | sylib 208 |
. . . . 5
|
| 13 | breq1 4656 |
. . . . . . . 8
| |
| 14 | 13 | anbi1d 741 |
. . . . . . 7
|
| 15 | 14 | exbidv 1850 |
. . . . . 6
|
| 16 | breq1 4656 |
. . . . . . . 8
| |
| 17 | 16 | anbi2d 740 |
. . . . . . 7
|
| 18 | 17 | exbidv 1850 |
. . . . . 6
|
| 19 | 15, 18 | rspc2v 3322 |
. . . . 5
|
| 20 | 12, 19 | syl5com 31 |
. . . 4
|
| 21 | 6, 20 | sylbid 230 |
. . 3
|
| 22 | reldir 17233 |
. . . . . . . . . 10
| |
| 23 | relelrn 5359 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | sylan 488 |
. . . . . . . . 9
|
| 25 | 24 | ex 450 |
. . . . . . . 8
|
| 26 | ssun2 3777 |
. . . . . . . . . . 11
| |
| 27 | dmrnssfld 5384 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sstri 3612 |
. . . . . . . . . 10
|
| 29 | 28, 3 | syl5sseqr 3654 |
. . . . . . . . 9
|
| 30 | 29 | sseld 3602 |
. . . . . . . 8
|
| 31 | 25, 30 | syld 47 |
. . . . . . 7
|
| 32 | 31 | adantrd 484 |
. . . . . 6
|
| 33 | 32 | ancrd 577 |
. . . . 5
|
| 34 | 33 | eximdv 1846 |
. . . 4
|
| 35 | df-rex 2918 |
. . . 4
| |
| 36 | 34, 35 | syl6ibr 242 |
. . 3
|
| 37 | 21, 36 | syld 47 |
. 2
|
| 38 | 37 | 3impib 1262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-dir 17230 |
| This theorem is referenced by: tailfb 32372 |
| Copyright terms: Public domain | W3C validator |