Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfb Structured version   Visualization version   Unicode version

Theorem tailfb 32372
Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypothesis
Ref Expression
tailfb.1  |-  X  =  dom  D
Assertion
Ref Expression
tailfb  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  e.  ( fBas `  X
) )

Proof of Theorem tailfb
Dummy variables  v  u  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tailfb.1 . . . . 5  |-  X  =  dom  D
21tailf 32370 . . . 4  |-  ( D  e.  DirRel  ->  ( tail `  D
) : X --> ~P X
)
3 frn 6053 . . . 4  |-  ( (
tail `  D ) : X --> ~P X  ->  ran  ( tail `  D
)  C_  ~P X
)
42, 3syl 17 . . 3  |-  ( D  e.  DirRel  ->  ran  ( tail `  D )  C_  ~P X )
54adantr 481 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  C_ 
~P X )
6 n0 3931 . . . . 5  |-  ( X  =/=  (/)  <->  E. x  x  e.  X )
7 ffn 6045 . . . . . . . 8  |-  ( (
tail `  D ) : X --> ~P X  -> 
( tail `  D )  Fn  X )
8 fnfvelrn 6356 . . . . . . . . 9  |-  ( ( ( tail `  D
)  Fn  X  /\  x  e.  X )  ->  ( ( tail `  D
) `  x )  e.  ran  ( tail `  D
) )
98ex 450 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( x  e.  X  ->  (
( tail `  D ) `  x )  e.  ran  ( tail `  D )
) )
102, 7, 93syl 18 . . . . . . 7  |-  ( D  e.  DirRel  ->  ( x  e.  X  ->  ( ( tail `  D ) `  x )  e.  ran  ( tail `  D )
) )
11 ne0i 3921 . . . . . . 7  |-  ( ( ( tail `  D
) `  x )  e.  ran  ( tail `  D
)  ->  ran  ( tail `  D )  =/=  (/) )
1210, 11syl6 35 . . . . . 6  |-  ( D  e.  DirRel  ->  ( x  e.  X  ->  ran  ( tail `  D )  =/=  (/) ) )
1312exlimdv 1861 . . . . 5  |-  ( D  e.  DirRel  ->  ( E. x  x  e.  X  ->  ran  ( tail `  D
)  =/=  (/) ) )
146, 13syl5bi 232 . . . 4  |-  ( D  e.  DirRel  ->  ( X  =/=  (/)  ->  ran  ( tail `  D )  =/=  (/) ) )
1514imp 445 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  =/=  (/) )
161tailini 32371 . . . . . . . 8  |-  ( ( D  e.  DirRel  /\  x  e.  X )  ->  x  e.  ( ( tail `  D
) `  x )
)
17 n0i 3920 . . . . . . . 8  |-  ( x  e.  ( ( tail `  D ) `  x
)  ->  -.  (
( tail `  D ) `  x )  =  (/) )
1816, 17syl 17 . . . . . . 7  |-  ( ( D  e.  DirRel  /\  x  e.  X )  ->  -.  ( ( tail `  D
) `  x )  =  (/) )
1918nrexdv 3001 . . . . . 6  |-  ( D  e.  DirRel  ->  -.  E. x  e.  X  ( ( tail `  D ) `  x )  =  (/) )
2019adantr 481 . . . . 5  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  -.  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) )
21 fvelrnb 6243 . . . . . . 7  |-  ( (
tail `  D )  Fn  X  ->  ( (/)  e.  ran  ( tail `  D
)  <->  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) ) )
222, 7, 213syl 18 . . . . . 6  |-  ( D  e.  DirRel  ->  ( (/)  e.  ran  ( tail `  D )  <->  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) ) )
2322adantr 481 . . . . 5  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( (/) 
e.  ran  ( tail `  D )  <->  E. x  e.  X  ( ( tail `  D ) `  x )  =  (/) ) )
2420, 23mtbird 315 . . . 4  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  -.  (/) 
e.  ran  ( tail `  D ) )
25 df-nel 2898 . . . 4  |-  ( (/)  e/ 
ran  ( tail `  D
)  <->  -.  (/)  e.  ran  ( tail `  D )
)
2624, 25sylibr 224 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  (/)  e/  ran  ( tail `  D )
)
27 fvelrnb 6243 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( x  e.  ran  ( tail `  D )  <->  E. u  e.  X  ( ( tail `  D ) `  u )  =  x ) )
28 fvelrnb 6243 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( y  e.  ran  ( tail `  D )  <->  E. v  e.  X  ( ( tail `  D ) `  v )  =  y ) )
2927, 28anbi12d 747 . . . . . . 7  |-  ( (
tail `  D )  Fn  X  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D ) )  <->  ( E. u  e.  X  (
( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) ) )
302, 7, 293syl 18 . . . . . 6  |-  ( D  e.  DirRel  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D
) )  <->  ( E. u  e.  X  (
( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) ) )
31 reeanv 3107 . . . . . . 7  |-  ( E. u  e.  X  E. v  e.  X  (
( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  <->  ( E. u  e.  X  ( ( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) )
321dirge 17237 . . . . . . . . . . 11  |-  ( ( D  e.  DirRel  /\  u  e.  X  /\  v  e.  X )  ->  E. w  e.  X  ( u D w  /\  v D w ) )
33323expb 1266 . . . . . . . . . 10  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  E. w  e.  X  ( u D w  /\  v D w ) )
342, 7syl 17 . . . . . . . . . . . . 13  |-  ( D  e.  DirRel  ->  ( tail `  D
)  Fn  X )
35 fnfvelrn 6356 . . . . . . . . . . . . 13  |-  ( ( ( tail `  D
)  Fn  X  /\  w  e.  X )  ->  ( ( tail `  D
) `  w )  e.  ran  ( tail `  D
) )
3634, 35sylan 488 . . . . . . . . . . . 12  |-  ( ( D  e.  DirRel  /\  w  e.  X )  ->  (
( tail `  D ) `  w )  e.  ran  ( tail `  D )
)
3736ad2ant2r 783 . . . . . . . . . . 11  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( tail `  D
) `  w )  e.  ran  ( tail `  D
) )
38 vex 3203 . . . . . . . . . . . . . . . . . . . . . 22  |-  x  e. 
_V
39 dirtr 17236 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( D  e.  DirRel  /\  x  e.  _V )  /\  ( u D w  /\  w D x ) )  ->  u D x )
4039exp32 631 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( D  e.  DirRel  /\  x  e.  _V )  ->  (
u D w  -> 
( w D x  ->  u D x ) ) )
4138, 40mpan2 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  DirRel  ->  ( u D w  ->  ( w D x  ->  u D x ) ) )
4241com23 86 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  DirRel  ->  ( w D x  ->  ( u D w  ->  u D x ) ) )
4342imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  DirRel  /\  w D x )  -> 
( u D w  ->  u D x ) )
4443ad2ant2rl 785 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( u D w  ->  u D x ) )
45 dirtr 17236 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( D  e.  DirRel  /\  x  e.  _V )  /\  ( v D w  /\  w D x ) )  ->  v D x )
4645exp32 631 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( D  e.  DirRel  /\  x  e.  _V )  ->  (
v D w  -> 
( w D x  ->  v D x ) ) )
4738, 46mpan2 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  DirRel  ->  ( v D w  ->  ( w D x  ->  v D x ) ) )
4847com23 86 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  DirRel  ->  ( w D x  ->  ( v D w  ->  v D x ) ) )
4948imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  DirRel  /\  w D x )  -> 
( v D w  ->  v D x ) )
5049ad2ant2rl 785 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( v D w  ->  v D x ) )
5144, 50anim12d 586 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( ( u D w  /\  v D w )  -> 
( u D x  /\  v D x ) ) )
5251expr 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  w  e.  X )  ->  (
w D x  -> 
( ( u D w  /\  v D w )  ->  (
u D x  /\  v D x ) ) ) )
5352com23 86 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  w  e.  X )  ->  (
( u D w  /\  v D w )  ->  ( w D x  ->  ( u D x  /\  v D x ) ) ) )
5453impr 649 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( w D x  ->  ( u D x  /\  v D x ) ) )
551eltail 32369 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  DirRel  /\  w  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  w )  <->  w D x ) )
5638, 55mp3an3 1413 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  DirRel  /\  w  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  w )  <->  w D x ) )
5756ad2ant2r 783 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  <->  w D x ) )
581eltail 32369 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  DirRel  /\  u  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  u )  <->  u D x ) )
5938, 58mp3an3 1413 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  DirRel  /\  u  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  u )  <->  u D x ) )
6059adantrr 753 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( x  e.  ( ( tail `  D
) `  u )  <->  u D x ) )
611eltail 32369 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  DirRel  /\  v  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  v )  <->  v D x ) )
6238, 61mp3an3 1413 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  DirRel  /\  v  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  v )  <->  v D x ) )
6362adantrl 752 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( x  e.  ( ( tail `  D
) `  v )  <->  v D x ) )
6460, 63anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
x  e.  ( (
tail `  D ) `  u )  /\  x  e.  ( ( tail `  D
) `  v )
)  <->  ( u D x  /\  v D x ) ) )
6564adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) )  <->  ( u D x  /\  v D x ) ) )
6654, 57, 653imtr4d 283 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  ->  ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) ) ) )
67 elin 3796 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) ) )
6866, 67syl6ibr 242 . . . . . . . . . . . 12  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  ->  x  e.  ( ( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) ) )
6968ssrdv 3609 . . . . . . . . . . 11  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( tail `  D
) `  w )  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) ) )
70 sseq1 3626 . . . . . . . . . . . 12  |-  ( z  =  ( ( tail `  D ) `  w
)  ->  ( z  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) )  <->  ( ( tail `  D ) `  w )  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) ) )
7170rspcev 3309 . . . . . . . . . . 11  |-  ( ( ( ( tail `  D
) `  w )  e.  ran  ( tail `  D
)  /\  ( ( tail `  D ) `  w )  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )
7237, 69, 71syl2anc 693 . . . . . . . . . 10  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( (
( tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) ) )
7333, 72rexlimddv 3035 . . . . . . . . 9  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )
74 ineq1 3807 . . . . . . . . . . . 12  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( ( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
)  =  ( x  i^i  ( ( tail `  D ) `  v
) ) )
7574sseq2d 3633 . . . . . . . . . . 11  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( z 
C_  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  z  C_  ( x  i^i  (
( tail `  D ) `  v ) ) ) )
7675rexbidv 3052 . . . . . . . . . 10  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( E. z  e.  ran  ( tail `  D ) z 
C_  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  ( ( tail `  D ) `  v ) ) ) )
77 ineq2 3808 . . . . . . . . . . . 12  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( x  i^i  ( ( tail `  D ) `  v
) )  =  ( x  i^i  y ) )
7877sseq2d 3633 . . . . . . . . . . 11  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( z 
C_  ( x  i^i  ( ( tail `  D
) `  v )
)  <->  z  C_  (
x  i^i  y )
) )
7978rexbidv 3052 . . . . . . . . . 10  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( E. z  e.  ran  ( tail `  D ) z 
C_  ( x  i^i  ( ( tail `  D
) `  v )
)  <->  E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
8076, 79sylan9bb 736 . . . . . . . . 9  |-  ( ( ( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  ->  ( E. z  e.  ran  ( tail `  D ) z  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) )  <->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8173, 80syl5ibcom 235 . . . . . . . 8  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8281rexlimdvva 3038 . . . . . . 7  |-  ( D  e.  DirRel  ->  ( E. u  e.  X  E. v  e.  X  ( (
( tail `  D ) `  u )  =  x  /\  ( ( tail `  D ) `  v
)  =  y )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
8331, 82syl5bir 233 . . . . . 6  |-  ( D  e.  DirRel  ->  ( ( E. u  e.  X  ( ( tail `  D
) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v )  =  y )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8430, 83sylbid 230 . . . . 5  |-  ( D  e.  DirRel  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D
) )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8584adantr 481 . . . 4  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  (
( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D )
)  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8685ralrimivv 2970 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  A. x  e.  ran  ( tail `  D
) A. y  e. 
ran  ( tail `  D
) E. z  e. 
ran  ( tail `  D
) z  C_  (
x  i^i  y )
)
8715, 26, 863jca 1242 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
88 dmexg 7097 . . . . 5  |-  ( D  e.  DirRel  ->  dom  D  e.  _V )
891, 88syl5eqel 2705 . . . 4  |-  ( D  e.  DirRel  ->  X  e.  _V )
9089adantr 481 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  X  e.  _V )
91 isfbas2 21639 . . 3  |-  ( X  e.  _V  ->  ( ran  ( tail `  D
)  e.  ( fBas `  X )  <->  ( ran  ( tail `  D )  C_ 
~P X  /\  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) ) ) )
9290, 91syl 17 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( ran  ( tail `  D
)  e.  ( fBas `  X )  <->  ( ran  ( tail `  D )  C_ 
~P X  /\  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) ) ) )
935, 87, 92mpbir2and 957 1  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  e.  ( fBas `  X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888   DirRelcdir 17228   tailctail 17229   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dir 17230  df-tail 17231  df-fbas 19743
This theorem is referenced by:  filnetlem4  32376
  Copyright terms: Public domain W3C validator