Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjf1 Structured version   Visualization version   Unicode version

Theorem disjf1 39369
Description: A 1 to 1 mapping built from disjoint, nonempty sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjf1.xph  |-  F/ x ph
disjf1.f  |-  F  =  ( x  e.  A  |->  B )
disjf1.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
disjf1.n0  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  (/) )
disjf1.dj  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
disjf1  |-  ( ph  ->  F : A -1-1-> V
)
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    ph( x)    B( x)    F( x)

Proof of Theorem disjf1
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjf1.xph . . . . . . 7  |-  F/ x ph
2 nfv 1843 . . . . . . 7  |-  F/ x  y  e.  A
31, 2nfan 1828 . . . . . 6  |-  F/ x
( ph  /\  y  e.  A )
4 nfcsb1v 3549 . . . . . . 7  |-  F/_ x [_ y  /  x ]_ B
5 nfcv 2764 . . . . . . 7  |-  F/_ x V
64, 5nfel 2777 . . . . . 6  |-  F/ x [_ y  /  x ]_ B  e.  V
73, 6nfim 1825 . . . . 5  |-  F/ x
( ( ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  V
)
8 eleq1 2689 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
98anbi2d 740 . . . . . 6  |-  ( x  =  y  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  y  e.  A ) ) )
10 csbeq1a 3542 . . . . . . 7  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
1110eleq1d 2686 . . . . . 6  |-  ( x  =  y  ->  ( B  e.  V  <->  [_ y  /  x ]_ B  e.  V
) )
129, 11imbi12d 334 . . . . 5  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  A )  ->  B  e.  V )  <-> 
( ( ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  V
) ) )
13 disjf1.b . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
147, 12, 13chvar 2262 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  V )
1514ralrimiva 2966 . . 3  |-  ( ph  ->  A. y  e.  A  [_ y  /  x ]_ B  e.  V )
16 inidm 3822 . . . . . . . . 9  |-  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ B )  =  [_ y  /  x ]_ B
1716eqcomi 2631 . . . . . . . 8  |-  [_ y  /  x ]_ B  =  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ B )
1817a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  [_ y  /  x ]_ B  =  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ B ) )
19 ineq2 3808 . . . . . . . 8  |-  ( [_ y  /  x ]_ B  =  [_ z  /  x ]_ B  ->  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ B )  =  (
[_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B ) )
2019ad2antlr 763 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ B )  =  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B ) )
21 disjf1.dj . . . . . . . . . 10  |-  ( ph  -> Disj  x  e.  A  B
)
22 nfcv 2764 . . . . . . . . . . 11  |-  F/_ w B
23 nfcsb1v 3549 . . . . . . . . . . 11  |-  F/_ x [_ w  /  x ]_ B
24 csbeq1a 3542 . . . . . . . . . . 11  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
2522, 23, 24cbvdisj 4630 . . . . . . . . . 10  |-  (Disj  x  e.  A  B  <-> Disj  w  e.  A  [_ w  /  x ]_ B )
2621, 25sylib 208 . . . . . . . . 9  |-  ( ph  -> Disj  w  e.  A  [_ w  /  x ]_ B )
2726ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  -> Disj  w  e.  A  [_ w  /  x ]_ B )
28 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  ( y  e.  A  /\  z  e.  A
) )
29 neqne 2802 . . . . . . . . 9  |-  ( -.  y  =  z  -> 
y  =/=  z )
3029adantl 482 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  y  =/=  z )
31 csbeq1 3536 . . . . . . . . 9  |-  ( w  =  y  ->  [_ w  /  x ]_ B  = 
[_ y  /  x ]_ B )
32 csbeq1 3536 . . . . . . . . 9  |-  ( w  =  z  ->  [_ w  /  x ]_ B  = 
[_ z  /  x ]_ B )
3331, 32disji2 4636 . . . . . . . 8  |-  ( (Disj  w  e.  A  [_ w  /  x ]_ B  /\  ( y  e.  A  /\  z  e.  A
)  /\  y  =/=  z )  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )
3427, 28, 30, 33syl3anc 1326 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )
3518, 20, 343eqtrd 2660 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  [_ y  /  x ]_ B  =  (/) )
36 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x (/)
374, 36nfne 2894 . . . . . . . . . . 11  |-  F/ x [_ y  /  x ]_ B  =/=  (/)
383, 37nfim 1825 . . . . . . . . . 10  |-  F/ x
( ( ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  =/=  (/) )
3910neeq1d 2853 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( B  =/=  (/)  <->  [_ y  /  x ]_ B  =/=  (/) ) )
409, 39imbi12d 334 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  A )  ->  B  =/=  (/) )  <->  ( ( ph  /\  y  e.  A
)  ->  [_ y  /  x ]_ B  =/=  (/) ) ) )
41 disjf1.n0 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  (/) )
4238, 40, 41chvar 2262 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  =/=  (/) )
4342adantrr 753 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  A ) )  ->  [_ y  /  x ]_ B  =/=  (/) )
4443ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  [_ y  /  x ]_ B  =/=  (/) )
4544neneqd 2799 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  A  /\  z  e.  A
) )  /\  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )  /\  -.  y  =  z )  ->  -.  [_ y  /  x ]_ B  =  (/) )
4635, 45condan 835 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  A  /\  z  e.  A )
)  /\  [_ y  /  x ]_ B  =  [_ z  /  x ]_ B
)  ->  y  =  z )
4746ex 450 . . . 4  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
( [_ y  /  x ]_ B  =  [_ z  /  x ]_ B  -> 
y  =  z ) )
4847ralrimivva 2971 . . 3  |-  ( ph  ->  A. y  e.  A  A. z  e.  A  ( [_ y  /  x ]_ B  =  [_ z  /  x ]_ B  -> 
y  =  z ) )
4915, 48jca 554 . 2  |-  ( ph  ->  ( A. y  e.  A  [_ y  /  x ]_ B  e.  V  /\  A. y  e.  A  A. z  e.  A  ( [_ y  /  x ]_ B  =  [_ z  /  x ]_ B  -> 
y  =  z ) ) )
50 disjf1.f . . . 4  |-  F  =  ( x  e.  A  |->  B )
51 nfcv 2764 . . . . 5  |-  F/_ y B
5251, 4, 10cbvmpt 4749 . . . 4  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
5350, 52eqtri 2644 . . 3  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
54 csbeq1 3536 . . 3  |-  ( y  =  z  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )
5553, 54f1mpt 6518 . 2  |-  ( F : A -1-1-> V  <->  ( A. y  e.  A  [_ y  /  x ]_ B  e.  V  /\  A. y  e.  A  A. z  e.  A  ( [_ y  /  x ]_ B  =  [_ z  /  x ]_ B  ->  y  =  z ) ) )
5649, 55sylibr 224 1  |-  ( ph  ->  F : A -1-1-> V
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   [_csb 3533    i^i cin 3573   (/)c0 3915  Disj wdisj 4620    |-> cmpt 4729   -1-1->wf1 5885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  disjf1o  39378  meadjiunlem  40682
  Copyright terms: Public domain W3C validator