MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvqp Structured version   Visualization version   Unicode version

Theorem funcnvqp 5952
Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
funcnvqp  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  {
<. E ,  F >. , 
<. G ,  H >. } ) )

Proof of Theorem funcnvqp
StepHypRef Expression
1 funcnvpr 5950 . . . . . . 7  |-  ( ( A  e.  U  /\  C  e.  V  /\  B  =/=  D )  ->  Fun  `' { <. A ,  B >. ,  <. C ,  D >. } )
213expa 1265 . . . . . 6  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  B  =/=  D )  ->  Fun  `' { <. A ,  B >. , 
<. C ,  D >. } )
323ad2antr1 1226 . . . . 5  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  ( B  =/=  D  /\  B  =/= 
F  /\  B  =/=  H ) )  ->  Fun  `' { <. A ,  B >. ,  <. C ,  D >. } )
43ad2ant2r 783 . . . 4  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  F  =/=  H ) )  ->  Fun  `' { <. A ,  B >. ,  <. C ,  D >. } )
543adantr2 1221 . . 3  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' { <. A ,  B >. ,  <. C ,  D >. } )
6 funcnvpr 5950 . . . . . 6  |-  ( ( E  e.  W  /\  G  e.  T  /\  F  =/=  H )  ->  Fun  `' { <. E ,  F >. ,  <. G ,  H >. } )
763expa 1265 . . . . 5  |-  ( ( ( E  e.  W  /\  G  e.  T
)  /\  F  =/=  H )  ->  Fun  `' { <. E ,  F >. , 
<. G ,  H >. } )
87ad2ant2l 782 . . . 4  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  F  =/=  H ) )  ->  Fun  `' { <. E ,  F >. ,  <. G ,  H >. } )
983adantr2 1221 . . 3  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' { <. E ,  F >. ,  <. G ,  H >. } )
10 df-rn 5125 . . . . . 6  |-  ran  { <. A ,  B >. , 
<. C ,  D >. }  =  dom  `' { <. A ,  B >. , 
<. C ,  D >. }
11 rnpropg 5615 . . . . . 6  |-  ( ( A  e.  U  /\  C  e.  V )  ->  ran  { <. A ,  B >. ,  <. C ,  D >. }  =  { B ,  D }
)
1210, 11syl5eqr 2670 . . . . 5  |-  ( ( A  e.  U  /\  C  e.  V )  ->  dom  `' { <. A ,  B >. ,  <. C ,  D >. }  =  { B ,  D }
)
13 df-rn 5125 . . . . . 6  |-  ran  { <. E ,  F >. , 
<. G ,  H >. }  =  dom  `' { <. E ,  F >. , 
<. G ,  H >. }
14 rnpropg 5615 . . . . . 6  |-  ( ( E  e.  W  /\  G  e.  T )  ->  ran  { <. E ,  F >. ,  <. G ,  H >. }  =  { F ,  H }
)
1513, 14syl5eqr 2670 . . . . 5  |-  ( ( E  e.  W  /\  G  e.  T )  ->  dom  `' { <. E ,  F >. ,  <. G ,  H >. }  =  { F ,  H }
)
1612, 15ineqan12d 3816 . . . 4  |-  ( ( ( A  e.  U  /\  C  e.  V
)  /\  ( E  e.  W  /\  G  e.  T ) )  -> 
( dom  `' { <. A ,  B >. ,  <. C ,  D >. }  i^i  dom  `' { <. E ,  F >. ,  <. G ,  H >. } )  =  ( { B ,  D }  i^i  { F ,  H } ) )
17 disjpr2 4248 . . . . . . 7  |-  ( ( ( B  =/=  F  /\  D  =/=  F
)  /\  ( B  =/=  H  /\  D  =/= 
H ) )  -> 
( { B ,  D }  i^i  { F ,  H } )  =  (/) )
1817an4s 869 . . . . . 6  |-  ( ( ( B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H ) )  -> 
( { B ,  D }  i^i  { F ,  H } )  =  (/) )
19183adantl1 1217 . . . . 5  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H ) )  -> 
( { B ,  D }  i^i  { F ,  H } )  =  (/) )
20193adant3 1081 . . . 4  |-  ( ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/=  H
)  /\  ( D  =/=  F  /\  D  =/= 
H )  /\  F  =/=  H )  ->  ( { B ,  D }  i^i  { F ,  H } )  =  (/) )
2116, 20sylan9eq 2676 . . 3  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  -> 
( dom  `' { <. A ,  B >. ,  <. C ,  D >. }  i^i  dom  `' { <. E ,  F >. ,  <. G ,  H >. } )  =  (/) )
22 funun 5932 . . 3  |-  ( ( ( Fun  `' { <. A ,  B >. , 
<. C ,  D >. }  /\  Fun  `' { <. E ,  F >. , 
<. G ,  H >. } )  /\  ( dom  `' { <. A ,  B >. ,  <. C ,  D >. }  i^i  dom  `' { <. E ,  F >. ,  <. G ,  H >. } )  =  (/) )  ->  Fun  ( `' { <. A ,  B >. ,  <. C ,  D >. }  u.  `' { <. E ,  F >. , 
<. G ,  H >. } ) )
235, 9, 21, 22syl21anc 1325 . 2  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  ( `' { <. A ,  B >. ,  <. C ,  D >. }  u.  `' { <. E ,  F >. ,  <. G ,  H >. } ) )
24 cnvun 5538 . . 3  |-  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. ,  <. G ,  H >. } )  =  ( `' { <. A ,  B >. , 
<. C ,  D >. }  u.  `' { <. E ,  F >. ,  <. G ,  H >. } )
2524funeqi 5909 . 2  |-  ( Fun  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  {
<. E ,  F >. , 
<. G ,  H >. } )  <->  Fun  ( `' { <. A ,  B >. , 
<. C ,  D >. }  u.  `' { <. E ,  F >. ,  <. G ,  H >. } ) )
2623, 25sylibr 224 1  |-  ( ( ( ( A  e.  U  /\  C  e.  V )  /\  ( E  e.  W  /\  G  e.  T )
)  /\  ( ( B  =/=  D  /\  B  =/=  F  /\  B  =/= 
H )  /\  ( D  =/=  F  /\  D  =/=  H )  /\  F  =/=  H ) )  ->  Fun  `' ( { <. A ,  B >. ,  <. C ,  D >. }  u.  {
<. E ,  F >. , 
<. G ,  H >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {cpr 4179   <.cop 4183   `'ccnv 5113   dom cdm 5114   ran crn 5115   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890
This theorem is referenced by:  funcnvs4  13660
  Copyright terms: Public domain W3C validator