Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjun Structured version   Visualization version   Unicode version

Theorem meadjun 40679
Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjun.m  |-  ( ph  ->  M  e. Meas )
meadjun.x  |-  S  =  dom  M
meadjun.a  |-  ( ph  ->  A  e.  S )
meadjun.b  |-  ( ph  ->  B  e.  S )
meadjun.dj  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
Assertion
Ref Expression
meadjun  |-  ( ph  ->  ( M `  ( A  u.  B )
)  =  ( ( M `  A ) +e ( M `
 B ) ) )

Proof of Theorem meadjun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
2 meadjun.m . . . . . . . . 9  |-  ( ph  ->  M  e. Meas )
3 meadjun.x . . . . . . . . 9  |-  S  =  dom  M
42, 3meaf 40670 . . . . . . . 8  |-  ( ph  ->  M : S --> ( 0 [,] +oo ) )
5 meadjun.b . . . . . . . 8  |-  ( ph  ->  B  e.  S )
64, 5ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( M `  B
)  e.  ( 0 [,] +oo ) )
71, 6sseldi 3601 . . . . . 6  |-  ( ph  ->  ( M `  B
)  e.  RR* )
8 xaddid2 12073 . . . . . 6  |-  ( ( M `  B )  e.  RR*  ->  ( 0 +e ( M `
 B ) )  =  ( M `  B ) )
97, 8syl 17 . . . . 5  |-  ( ph  ->  ( 0 +e
( M `  B
) )  =  ( M `  B ) )
109eqcomd 2628 . . . 4  |-  ( ph  ->  ( M `  B
)  =  ( 0 +e ( M `
 B ) ) )
1110adantr 481 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  ( M `  B )  =  ( 0 +e ( M `  B ) ) )
12 uneq1 3760 . . . . . 6  |-  ( A  =  (/)  ->  ( A  u.  B )  =  ( (/)  u.  B
) )
13 0un 39215 . . . . . . 7  |-  ( (/)  u.  B )  =  B
1413a1i 11 . . . . . 6  |-  ( A  =  (/)  ->  ( (/)  u.  B )  =  B )
1512, 14eqtrd 2656 . . . . 5  |-  ( A  =  (/)  ->  ( A  u.  B )  =  B )
1615fveq2d 6195 . . . 4  |-  ( A  =  (/)  ->  ( M `
 ( A  u.  B ) )  =  ( M `  B
) )
1716adantl 482 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  ( M `  ( A  u.  B
) )  =  ( M `  B ) )
18 fveq2 6191 . . . . . 6  |-  ( A  =  (/)  ->  ( M `
 A )  =  ( M `  (/) ) )
1918adantl 482 . . . . 5  |-  ( (
ph  /\  A  =  (/) )  ->  ( M `  A )  =  ( M `  (/) ) )
202mea0 40671 . . . . . 6  |-  ( ph  ->  ( M `  (/) )  =  0 )
2120adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  (/) )  ->  ( M `  (/) )  =  0 )
2219, 21eqtrd 2656 . . . 4  |-  ( (
ph  /\  A  =  (/) )  ->  ( M `  A )  =  0 )
2322oveq1d 6665 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  ( ( M `  A ) +e ( M `
 B ) )  =  ( 0 +e ( M `  B ) ) )
2411, 17, 233eqtr4d 2666 . 2  |-  ( (
ph  /\  A  =  (/) )  ->  ( M `  ( A  u.  B
) )  =  ( ( M `  A
) +e ( M `  B ) ) )
25 simpl 473 . . 3  |-  ( (
ph  /\  -.  A  =  (/) )  ->  ph )
26 meadjun.dj . . . . . 6  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
2726ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  A  =  B )  ->  ( A  i^i  B
)  =  (/) )
28 inidm 3822 . . . . . . . . . . 11  |-  ( A  i^i  A )  =  A
2928eqcomi 2631 . . . . . . . . . 10  |-  A  =  ( A  i^i  A
)
30 ineq2 3808 . . . . . . . . . 10  |-  ( A  =  B  ->  ( A  i^i  A )  =  ( A  i^i  B
) )
3129, 30syl5req 2669 . . . . . . . . 9  |-  ( A  =  B  ->  ( A  i^i  B )  =  A )
3231adantl 482 . . . . . . . 8  |-  ( ( -.  A  =  (/)  /\  A  =  B )  ->  ( A  i^i  B )  =  A )
33 neqne 2802 . . . . . . . . 9  |-  ( -.  A  =  (/)  ->  A  =/=  (/) )
3433adantr 481 . . . . . . . 8  |-  ( ( -.  A  =  (/)  /\  A  =  B )  ->  A  =/=  (/) )
3532, 34eqnetrd 2861 . . . . . . 7  |-  ( ( -.  A  =  (/)  /\  A  =  B )  ->  ( A  i^i  B )  =/=  (/) )
3635neneqd 2799 . . . . . 6  |-  ( ( -.  A  =  (/)  /\  A  =  B )  ->  -.  ( A  i^i  B )  =  (/) )
3736adantll 750 . . . . 5  |-  ( ( ( ph  /\  -.  A  =  (/) )  /\  A  =  B )  ->  -.  ( A  i^i  B )  =  (/) )
3827, 37pm2.65da 600 . . . 4  |-  ( (
ph  /\  -.  A  =  (/) )  ->  -.  A  =  B )
3938neqned 2801 . . 3  |-  ( (
ph  /\  -.  A  =  (/) )  ->  A  =/=  B )
40 meadjun.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
41 uniprg 4450 . . . . . . . 8  |-  ( ( A  e.  S  /\  B  e.  S )  ->  U. { A ,  B }  =  ( A  u.  B )
)
4240, 5, 41syl2anc 693 . . . . . . 7  |-  ( ph  ->  U. { A ,  B }  =  ( A  u.  B )
)
4342eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( A  u.  B
)  =  U. { A ,  B }
)
4443fveq2d 6195 . . . . 5  |-  ( ph  ->  ( M `  ( A  u.  B )
)  =  ( M `
 U. { A ,  B } ) )
4544adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( M `  ( A  u.  B
) )  =  ( M `  U. { A ,  B }
) )
4640, 5prssd 4354 . . . . . 6  |-  ( ph  ->  { A ,  B }  C_  S )
47 prfi 8235 . . . . . . . 8  |-  { A ,  B }  e.  Fin
48 isfinite 8549 . . . . . . . . . 10  |-  ( { A ,  B }  e.  Fin  <->  { A ,  B }  ~<  om )
4948biimpi 206 . . . . . . . . 9  |-  ( { A ,  B }  e.  Fin  ->  { A ,  B }  ~<  om )
50 sdomdom 7983 . . . . . . . . 9  |-  ( { A ,  B }  ~<  om  ->  { A ,  B }  ~<_  om )
5149, 50syl 17 . . . . . . . 8  |-  ( { A ,  B }  e.  Fin  ->  { A ,  B }  ~<_  om )
5247, 51ax-mp 5 . . . . . . 7  |-  { A ,  B }  ~<_  om
5352a1i 11 . . . . . 6  |-  ( ph  ->  { A ,  B }  ~<_  om )
54 disjxsn 4646 . . . . . . . . . 10  |- Disj  x  e. 
{ B } x
5554a1i 11 . . . . . . . . 9  |-  ( A  =  B  -> Disj  x  e. 
{ B } x
)
56 preq1 4268 . . . . . . . . . . 11  |-  ( A  =  B  ->  { A ,  B }  =  { B ,  B }
)
57 dfsn2 4190 . . . . . . . . . . . . 13  |-  { B }  =  { B ,  B }
5857eqcomi 2631 . . . . . . . . . . . 12  |-  { B ,  B }  =  { B }
5958a1i 11 . . . . . . . . . . 11  |-  ( A  =  B  ->  { B ,  B }  =  { B } )
6056, 59eqtrd 2656 . . . . . . . . . 10  |-  ( A  =  B  ->  { A ,  B }  =  { B } )
6160disjeq1d 4628 . . . . . . . . 9  |-  ( A  =  B  ->  (Disj  x  e.  { A ,  B } x  <-> Disj  x  e.  { B } x ) )
6255, 61mpbird 247 . . . . . . . 8  |-  ( A  =  B  -> Disj  x  e. 
{ A ,  B } x )
6362adantl 482 . . . . . . 7  |-  ( (
ph  /\  A  =  B )  -> Disj  x  e. 
{ A ,  B } x )
64 simpl 473 . . . . . . . 8  |-  ( (
ph  /\  -.  A  =  B )  ->  ph )
65 neqne 2802 . . . . . . . . 9  |-  ( -.  A  =  B  ->  A  =/=  B )
6665adantl 482 . . . . . . . 8  |-  ( (
ph  /\  -.  A  =  B )  ->  A  =/=  B )
6726adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  B )  ->  ( A  i^i  B )  =  (/) )
6840adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  B )  ->  A  e.  S )
695adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  B )  ->  B  e.  S )
70 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  B )  ->  A  =/=  B )
71 id 22 . . . . . . . . . . 11  |-  ( x  =  A  ->  x  =  A )
72 id 22 . . . . . . . . . . 11  |-  ( x  =  B  ->  x  =  B )
7371, 72disjprg 4648 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
(Disj  x  e.  { A ,  B } x  <->  ( A  i^i  B )  =  (/) ) )
7468, 69, 70, 73syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  B )  ->  (Disj  x  e. 
{ A ,  B } x  <->  ( A  i^i  B )  =  (/) ) )
7567, 74mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  B )  -> Disj  x  e.  { A ,  B }
x )
7664, 66, 75syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  -.  A  =  B )  -> Disj  x  e. 
{ A ,  B } x )
7763, 76pm2.61dan 832 . . . . . 6  |-  ( ph  -> Disj  x  e.  { A ,  B } x )
782, 3, 46, 53, 77meadjuni 40674 . . . . 5  |-  ( ph  ->  ( M `  U. { A ,  B }
)  =  (Σ^ `  ( M  |`  { A ,  B } ) ) )
7978adantr 481 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( M `  U. { A ,  B } )  =  (Σ^ `  ( M  |`  { A ,  B } ) ) )
804, 40ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( M `  A
)  e.  ( 0 [,] +oo ) )
8180adantr 481 . . . . . 6  |-  ( (
ph  /\  A  =/=  B )  ->  ( M `  A )  e.  ( 0 [,] +oo )
)
826adantr 481 . . . . . 6  |-  ( (
ph  /\  A  =/=  B )  ->  ( M `  B )  e.  ( 0 [,] +oo )
)
83 fveq2 6191 . . . . . 6  |-  ( x  =  A  ->  ( M `  x )  =  ( M `  A ) )
84 fveq2 6191 . . . . . 6  |-  ( x  =  B  ->  ( M `  x )  =  ( M `  B ) )
8568, 69, 81, 82, 83, 84, 70sge0pr 40611 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  (Σ^ `  ( x  e.  { A ,  B }  |->  ( M `  x
) ) )  =  ( ( M `  A ) +e
( M `  B
) ) )
864, 46fssresd 6071 . . . . . . . . 9  |-  ( ph  ->  ( M  |`  { A ,  B } ) : { A ,  B }
--> ( 0 [,] +oo ) )
8786feqmptd 6249 . . . . . . . 8  |-  ( ph  ->  ( M  |`  { A ,  B } )  =  ( x  e.  { A ,  B }  |->  ( ( M  |`  { A ,  B }
) `  x )
) )
88 fvres 6207 . . . . . . . . . 10  |-  ( x  e.  { A ,  B }  ->  ( ( M  |`  { A ,  B } ) `  x )  =  ( M `  x ) )
8988mpteq2ia 4740 . . . . . . . . 9  |-  ( x  e.  { A ,  B }  |->  ( ( M  |`  { A ,  B } ) `  x ) )  =  ( x  e.  { A ,  B }  |->  ( M `  x
) )
9089a1i 11 . . . . . . . 8  |-  ( ph  ->  ( x  e.  { A ,  B }  |->  ( ( M  |`  { A ,  B }
) `  x )
)  =  ( x  e.  { A ,  B }  |->  ( M `
 x ) ) )
9187, 90eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( M  |`  { A ,  B } )  =  ( x  e.  { A ,  B }  |->  ( M `  x
) ) )
9291fveq2d 6195 . . . . . 6  |-  ( ph  ->  (Σ^ `  ( M  |`  { A ,  B } ) )  =  (Σ^ `  ( x  e.  { A ,  B }  |->  ( M `  x
) ) ) )
9392adantr 481 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  (Σ^ `  ( M  |`  { A ,  B } ) )  =  (Σ^ `  ( x  e.  { A ,  B }  |->  ( M `  x
) ) ) )
94 eqidd 2623 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  ( ( M `  A ) +e ( M `
 B ) )  =  ( ( M `
 A ) +e ( M `  B ) ) )
9585, 93, 943eqtr4d 2666 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  (Σ^ `  ( M  |`  { A ,  B } ) )  =  ( ( M `
 A ) +e ( M `  B ) ) )
9645, 79, 953eqtrd 2660 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  ( M `  ( A  u.  B
) )  =  ( ( M `  A
) +e ( M `  B ) ) )
9725, 39, 96syl2anc 693 . 2  |-  ( (
ph  /\  -.  A  =  (/) )  ->  ( M `  ( A  u.  B ) )  =  ( ( M `  A ) +e
( M `  B
) ) )
9824, 97pm2.61dan 832 1  |-  ( ph  ->  ( M `  ( A  u.  B )
)  =  ( ( M `  A ) +e ( M `
 B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   0cc0 9936   +oocpnf 10071   RR*cxr 10073   +ecxad 11944   [,]cicc 12178  Σ^csumge0 40579  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580  df-mea 40667
This theorem is referenced by:  meassle  40680  meaunle  40681  meadjunre  40693
  Copyright terms: Public domain W3C validator