MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatelnd Structured version   Visualization version   Unicode version

Theorem dmatelnd 20302
Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a  |-  A  =  ( N Mat  R )
dmatid.b  |-  B  =  ( Base `  A
)
dmatid.0  |-  .0.  =  ( 0g `  R )
dmatid.d  |-  D  =  ( N DMat  R )
Assertion
Ref Expression
dmatelnd  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D )  /\  (
I  e.  N  /\  J  e.  N  /\  I  =/=  J ) )  ->  ( I X J )  =  .0.  )

Proof of Theorem dmatelnd
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5  |-  A  =  ( N Mat  R )
2 dmatid.b . . . . 5  |-  B  =  ( Base `  A
)
3 dmatid.0 . . . . 5  |-  .0.  =  ( 0g `  R )
4 dmatid.d . . . . 5  |-  D  =  ( N DMat  R )
51, 2, 3, 4dmatel 20299 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  D  <->  ( X  e.  B  /\  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i X j )  =  .0.  )
) ) )
6 neeq1 2856 . . . . . . . . . . 11  |-  ( i  =  I  ->  (
i  =/=  j  <->  I  =/=  j ) )
7 oveq1 6657 . . . . . . . . . . . 12  |-  ( i  =  I  ->  (
i X j )  =  ( I X j ) )
87eqeq1d 2624 . . . . . . . . . . 11  |-  ( i  =  I  ->  (
( i X j )  =  .0.  <->  ( I X j )  =  .0.  ) )
96, 8imbi12d 334 . . . . . . . . . 10  |-  ( i  =  I  ->  (
( i  =/=  j  ->  ( i X j )  =  .0.  )  <->  ( I  =/=  j  -> 
( I X j )  =  .0.  )
) )
10 neeq2 2857 . . . . . . . . . . 11  |-  ( j  =  J  ->  (
I  =/=  j  <->  I  =/=  J ) )
11 oveq2 6658 . . . . . . . . . . . 12  |-  ( j  =  J  ->  (
I X j )  =  ( I X J ) )
1211eqeq1d 2624 . . . . . . . . . . 11  |-  ( j  =  J  ->  (
( I X j )  =  .0.  <->  ( I X J )  =  .0.  ) )
1310, 12imbi12d 334 . . . . . . . . . 10  |-  ( j  =  J  ->  (
( I  =/=  j  ->  ( I X j )  =  .0.  )  <->  ( I  =/=  J  -> 
( I X J )  =  .0.  )
) )
149, 13rspc2v 3322 . . . . . . . . 9  |-  ( ( I  e.  N  /\  J  e.  N )  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i X j )  =  .0.  )  ->  (
I  =/=  J  -> 
( I X J )  =  .0.  )
) )
1514com23 86 . . . . . . . 8  |-  ( ( I  e.  N  /\  J  e.  N )  ->  ( I  =/=  J  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i X j )  =  .0.  )  ->  (
I X J )  =  .0.  ) ) )
16153impia 1261 . . . . . . 7  |-  ( ( I  e.  N  /\  J  e.  N  /\  I  =/=  J )  -> 
( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i X j )  =  .0.  )  ->  (
I X J )  =  .0.  ) )
1716com12 32 . . . . . 6  |-  ( A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i X j )  =  .0.  )  ->  ( ( I  e.  N  /\  J  e.  N  /\  I  =/= 
J )  ->  (
I X J )  =  .0.  ) )
18172a1i 12 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  B  ->  ( A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i X j )  =  .0.  )  ->  (
( I  e.  N  /\  J  e.  N  /\  I  =/=  J
)  ->  ( I X J )  =  .0.  ) ) ) )
1918impd 447 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( ( X  e.  B  /\  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i X j )  =  .0.  ) )  -> 
( ( I  e.  N  /\  J  e.  N  /\  I  =/= 
J )  ->  (
I X J )  =  .0.  ) ) )
205, 19sylbid 230 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  D  ->  ( ( I  e.  N  /\  J  e.  N  /\  I  =/= 
J )  ->  (
I X J )  =  .0.  ) ) )
21203impia 1261 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D )  ->  (
( I  e.  N  /\  J  e.  N  /\  I  =/=  J
)  ->  ( I X J )  =  .0.  ) )
2221imp 445 1  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D )  /\  (
I  e.  N  /\  J  e.  N  /\  I  =/=  J ) )  ->  ( I X J )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   0gc0g 16100   Ringcrg 18547   Mat cmat 20213   DMat cdmat 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-dmat 20296
This theorem is referenced by:  dmatmul  20303  dmatsubcl  20304
  Copyright terms: Public domain W3C validator