| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmatelnd | Structured version Visualization version Unicode version | ||
| Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmatid.a |
|
| dmatid.b |
|
| dmatid.0 |
|
| dmatid.d |
|
| Ref | Expression |
|---|---|
| dmatelnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmatid.a |
. . . . 5
| |
| 2 | dmatid.b |
. . . . 5
| |
| 3 | dmatid.0 |
. . . . 5
| |
| 4 | dmatid.d |
. . . . 5
| |
| 5 | 1, 2, 3, 4 | dmatel 20299 |
. . . 4
|
| 6 | neeq1 2856 |
. . . . . . . . . . 11
| |
| 7 | oveq1 6657 |
. . . . . . . . . . . 12
| |
| 8 | 7 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 9 | 6, 8 | imbi12d 334 |
. . . . . . . . . 10
|
| 10 | neeq2 2857 |
. . . . . . . . . . 11
| |
| 11 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 12 | 11 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 13 | 10, 12 | imbi12d 334 |
. . . . . . . . . 10
|
| 14 | 9, 13 | rspc2v 3322 |
. . . . . . . . 9
|
| 15 | 14 | com23 86 |
. . . . . . . 8
|
| 16 | 15 | 3impia 1261 |
. . . . . . 7
|
| 17 | 16 | com12 32 |
. . . . . 6
|
| 18 | 17 | 2a1i 12 |
. . . . 5
|
| 19 | 18 | impd 447 |
. . . 4
|
| 20 | 5, 19 | sylbid 230 |
. . 3
|
| 21 | 20 | 3impia 1261 |
. 2
|
| 22 | 21 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-dmat 20296 |
| This theorem is referenced by: dmatmul 20303 dmatsubcl 20304 |
| Copyright terms: Public domain | W3C validator |