MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dminss Structured version   Visualization version   Unicode version

Theorem dminss 5547
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )

Proof of Theorem dminss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 2052 . . . . . . 7  |-  ( ( x  e.  A  /\  x R y )  ->  E. x ( x  e.  A  /\  x R y ) )
21ancoms 469 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  E. x ( x  e.  A  /\  x R y ) )
3 vex 3203 . . . . . . 7  |-  y  e. 
_V
43elima2 5472 . . . . . 6  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
52, 4sylibr 224 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y  e.  ( R
" A ) )
6 simpl 473 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  x R y )
7 vex 3203 . . . . . . 7  |-  x  e. 
_V
83, 7brcnv 5305 . . . . . 6  |-  ( y `' R x  <->  x R
y )
96, 8sylibr 224 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y `' R x )
105, 9jca 554 . . . 4  |-  ( ( x R y  /\  x  e.  A )  ->  ( y  e.  ( R " A )  /\  y `' R x ) )
1110eximi 1762 . . 3  |-  ( E. y ( x R y  /\  x  e.  A )  ->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
127eldm 5321 . . . . 5  |-  ( x  e.  dom  R  <->  E. y  x R y )
1312anbi1i 731 . . . 4  |-  ( ( x  e.  dom  R  /\  x  e.  A
)  <->  ( E. y  x R y  /\  x  e.  A ) )
14 elin 3796 . . . 4  |-  ( x  e.  ( dom  R  i^i  A )  <->  ( x  e.  dom  R  /\  x  e.  A ) )
15 19.41v 1914 . . . 4  |-  ( E. y ( x R y  /\  x  e.  A )  <->  ( E. y  x R y  /\  x  e.  A )
)
1613, 14, 153bitr4i 292 . . 3  |-  ( x  e.  ( dom  R  i^i  A )  <->  E. y
( x R y  /\  x  e.  A
) )
177elima2 5472 . . 3  |-  ( x  e.  ( `' R " ( R " A
) )  <->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
1811, 16, 173imtr4i 281 . 2  |-  ( x  e.  ( dom  R  i^i  A )  ->  x  e.  ( `' R "
( R " A
) ) )
1918ssriv 3607 1  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   E.wex 1704    e. wcel 1990    i^i cin 3573    C_ wss 3574   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  lmhmlsp  19049  cnclsi  21076  kgencn3  21361  kqsat  21534  kqcldsat  21536  cfilucfil  22364
  Copyright terms: Public domain W3C validator