MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlsp Structured version   Visualization version   Unicode version

Theorem lmhmlsp 19049
Description: Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlsp.v  |-  V  =  ( Base `  S
)
lmhmlsp.k  |-  K  =  ( LSpan `  S )
lmhmlsp.l  |-  L  =  ( LSpan `  T )
Assertion
Ref Expression
lmhmlsp  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( F " ( K `  U ) )  =  ( L `  ( F " U ) ) )

Proof of Theorem lmhmlsp
StepHypRef Expression
1 lmhmlsp.v . . . . . 6  |-  V  =  ( Base `  S
)
2 eqid 2622 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
31, 2lmhmf 19034 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  F : V
--> ( Base `  T
) )
43adantr 481 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  F : V --> ( Base `  T
) )
5 ffun 6048 . . . 4  |-  ( F : V --> ( Base `  T )  ->  Fun  F )
64, 5syl 17 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  Fun  F )
7 lmhmlmod1 19033 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
87adantr 481 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  S  e.  LMod )
9 lmhmlmod2 19032 . . . . . . 7  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
109adantr 481 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  T  e.  LMod )
11 imassrn 5477 . . . . . . 7  |-  ( F
" U )  C_  ran  F
12 frn 6053 . . . . . . . 8  |-  ( F : V --> ( Base `  T )  ->  ran  F 
C_  ( Base `  T
) )
134, 12syl 17 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ran  F 
C_  ( Base `  T
) )
1411, 13syl5ss 3614 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( F " U )  C_  ( Base `  T )
)
15 eqid 2622 . . . . . . 7  |-  ( LSubSp `  T )  =  (
LSubSp `  T )
16 lmhmlsp.l . . . . . . 7  |-  L  =  ( LSpan `  T )
172, 15, 16lspcl 18976 . . . . . 6  |-  ( ( T  e.  LMod  /\  ( F " U )  C_  ( Base `  T )
)  ->  ( L `  ( F " U
) )  e.  (
LSubSp `  T ) )
1810, 14, 17syl2anc 693 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( L `  ( F " U ) )  e.  ( LSubSp `  T )
)
19 eqid 2622 . . . . . 6  |-  ( LSubSp `  S )  =  (
LSubSp `  S )
2019, 15lmhmpreima 19048 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  ( L `  ( F " U ) )  e.  ( LSubSp `  T )
)  ->  ( `' F " ( L `  ( F " U ) ) )  e.  (
LSubSp `  S ) )
2118, 20syldan 487 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( `' F " ( L `
 ( F " U ) ) )  e.  ( LSubSp `  S
) )
22 incom 3805 . . . . . . 7  |-  ( dom 
F  i^i  U )  =  ( U  i^i  dom 
F )
23 simpr 477 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  U  C_  V )
24 fdm 6051 . . . . . . . . . 10  |-  ( F : V --> ( Base `  T )  ->  dom  F  =  V )
254, 24syl 17 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  dom  F  =  V )
2623, 25sseqtr4d 3642 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  U  C_ 
dom  F )
27 df-ss 3588 . . . . . . . 8  |-  ( U 
C_  dom  F  <->  ( U  i^i  dom  F )  =  U )
2826, 27sylib 208 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( U  i^i  dom  F )  =  U )
2922, 28syl5req 2669 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  U  =  ( dom  F  i^i  U ) )
30 dminss 5547 . . . . . 6  |-  ( dom 
F  i^i  U )  C_  ( `' F "
( F " U
) )
3129, 30syl6eqss 3655 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  U  C_  ( `' F "
( F " U
) ) )
322, 16lspssid 18985 . . . . . . 7  |-  ( ( T  e.  LMod  /\  ( F " U )  C_  ( Base `  T )
)  ->  ( F " U )  C_  ( L `  ( F " U ) ) )
3310, 14, 32syl2anc 693 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( F " U )  C_  ( L `  ( F
" U ) ) )
34 imass2 5501 . . . . . 6  |-  ( ( F " U ) 
C_  ( L `  ( F " U ) )  ->  ( `' F " ( F " U ) )  C_  ( `' F " ( L `
 ( F " U ) ) ) )
3533, 34syl 17 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( `' F " ( F
" U ) ) 
C_  ( `' F " ( L `  ( F " U ) ) ) )
3631, 35sstrd 3613 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  U  C_  ( `' F "
( L `  ( F " U ) ) ) )
37 lmhmlsp.k . . . . 5  |-  K  =  ( LSpan `  S )
3819, 37lspssp 18988 . . . 4  |-  ( ( S  e.  LMod  /\  ( `' F " ( L `
 ( F " U ) ) )  e.  ( LSubSp `  S
)  /\  U  C_  ( `' F " ( L `
 ( F " U ) ) ) )  ->  ( K `  U )  C_  ( `' F " ( L `
 ( F " U ) ) ) )
398, 21, 36, 38syl3anc 1326 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( K `  U )  C_  ( `' F "
( L `  ( F " U ) ) ) )
40 funimass2 5972 . . 3  |-  ( ( Fun  F  /\  ( K `  U )  C_  ( `' F "
( L `  ( F " U ) ) ) )  ->  ( F " ( K `  U ) )  C_  ( L `  ( F
" U ) ) )
416, 39, 40syl2anc 693 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( F " ( K `  U ) )  C_  ( L `  ( F
" U ) ) )
421, 19, 37lspcl 18976 . . . . 5  |-  ( ( S  e.  LMod  /\  U  C_  V )  ->  ( K `  U )  e.  ( LSubSp `  S )
)
438, 23, 42syl2anc 693 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( K `  U )  e.  ( LSubSp `  S )
)
4419, 15lmhmima 19047 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  ( K `  U )  e.  ( LSubSp `  S )
)  ->  ( F " ( K `  U
) )  e.  (
LSubSp `  T ) )
4543, 44syldan 487 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( F " ( K `  U ) )  e.  ( LSubSp `  T )
)
461, 37lspssid 18985 . . . . 5  |-  ( ( S  e.  LMod  /\  U  C_  V )  ->  U  C_  ( K `  U
) )
478, 23, 46syl2anc 693 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  U  C_  ( K `  U
) )
48 imass2 5501 . . . 4  |-  ( U 
C_  ( K `  U )  ->  ( F " U )  C_  ( F " ( K `
 U ) ) )
4947, 48syl 17 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( F " U )  C_  ( F " ( K `
 U ) ) )
5015, 16lspssp 18988 . . 3  |-  ( ( T  e.  LMod  /\  ( F " ( K `  U ) )  e.  ( LSubSp `  T )  /\  ( F " U
)  C_  ( F " ( K `  U
) ) )  -> 
( L `  ( F " U ) ) 
C_  ( F "
( K `  U
) ) )
5110, 45, 49, 50syl3anc 1326 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( L `  ( F " U ) )  C_  ( F " ( K `
 U ) ) )
5241, 51eqssd 3620 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  C_  V )  ->  ( F " ( K `  U ) )  =  ( L `  ( F " U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022
This theorem is referenced by:  frlmup3  20139  lindfmm  20166  lmimlbs  20175  lmhmfgima  37654  lmhmfgsplit  37656
  Copyright terms: Public domain W3C validator