MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn3 Structured version   Visualization version   Unicode version

Theorem kgencn3 21361
Description: The set of continuous functions from  J to  K is unaffected by k-ification of  K, if  J is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  =  ( J  Cn  (𝑘Gen `  K ) ) )

Proof of Theorem kgencn3
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7  |-  U. J  =  U. J
2 eqid 2622 . . . . . . 7  |-  U. K  =  U. K
31, 2cnf 21050 . . . . . 6  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> U. K
)
43adantl 482 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f : U. J
--> U. K )
5 cnvimass 5485 . . . . . . . . 9  |-  ( `' f " x ) 
C_  dom  f
6 fdm 6051 . . . . . . . . . . 11  |-  ( f : U. J --> U. K  ->  dom  f  =  U. J )
74, 6syl 17 . . . . . . . . . 10  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  dom  f  =  U. J )
87adantr 481 . . . . . . . . 9  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  dom  f  =  U. J )
95, 8syl5sseq 3653 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  C_  U. J )
10 cnvresima 5623 . . . . . . . . . . . 12  |-  ( `' ( f  |`  y
) " ( x  i^i  ( f "
y ) ) )  =  ( ( `' f " ( x  i^i  ( f "
y ) ) )  i^i  y )
114ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  f : U. J --> U. K
)
12 ffun 6048 . . . . . . . . . . . . . . 15  |-  ( f : U. J --> U. K  ->  Fun  f )
13 inpreima 6342 . . . . . . . . . . . . . . 15  |-  ( Fun  f  ->  ( `' f " ( x  i^i  ( f " y
) ) )  =  ( ( `' f
" x )  i^i  ( `' f "
( f " y
) ) ) )
1411, 12, 133syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' f " (
x  i^i  ( f " y ) ) )  =  ( ( `' f " x
)  i^i  ( `' f " ( f "
y ) ) ) )
1514ineq1d 3813 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
( x  i^i  (
f " y ) ) )  i^i  y
)  =  ( ( ( `' f "
x )  i^i  ( `' f " (
f " y ) ) )  i^i  y
) )
16 in32 3825 . . . . . . . . . . . . . 14  |-  ( ( ( `' f "
x )  i^i  ( `' f " (
f " y ) ) )  i^i  y
)  =  ( ( ( `' f "
x )  i^i  y
)  i^i  ( `' f " ( f "
y ) ) )
17 ssrin 3838 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' f " x
)  C_  dom  f  -> 
( ( `' f
" x )  i^i  y )  C_  ( dom  f  i^i  y
) )
185, 17ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( `' f " x
)  i^i  y )  C_  ( dom  f  i^i  y )
19 dminss 5547 . . . . . . . . . . . . . . . . 17  |-  ( dom  f  i^i  y ) 
C_  ( `' f
" ( f "
y ) )
2018, 19sstri 3612 . . . . . . . . . . . . . . . 16  |-  ( ( `' f " x
)  i^i  y )  C_  ( `' f "
( f " y
) )
2120a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
x )  i^i  y
)  C_  ( `' f " ( f "
y ) ) )
22 df-ss 3588 . . . . . . . . . . . . . . 15  |-  ( ( ( `' f "
x )  i^i  y
)  C_  ( `' f " ( f "
y ) )  <->  ( (
( `' f "
x )  i^i  y
)  i^i  ( `' f " ( f "
y ) ) )  =  ( ( `' f " x )  i^i  y ) )
2321, 22sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( ( `' f
" x )  i^i  y )  i^i  ( `' f " (
f " y ) ) )  =  ( ( `' f "
x )  i^i  y
) )
2416, 23syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( ( `' f
" x )  i^i  ( `' f "
( f " y
) ) )  i^i  y )  =  ( ( `' f "
x )  i^i  y
) )
2515, 24eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
( x  i^i  (
f " y ) ) )  i^i  y
)  =  ( ( `' f " x
)  i^i  y )
)
2610, 25syl5eq 2668 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  =  ( ( `' f " x
)  i^i  y )
)
27 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f  e.  ( J  Cn  K ) )
2827ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  f  e.  ( J  Cn  K
) )
29 elpwi 4168 . . . . . . . . . . . . . . 15  |-  ( y  e.  ~P U. J  ->  y  C_  U. J )
3029ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  y  C_ 
U. J )
311cnrest 21089 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( J  Cn  K )  /\  y  C_  U. J )  ->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  K ) )
3228, 30, 31syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f  |`  y )  e.  ( ( Jt  y )  Cn  K ) )
33 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  e.  Top )
3433ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  K  e.  Top )
352toptopon 20722 . . . . . . . . . . . . . . 15  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3634, 35sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  K  e.  (TopOn `  U. K ) )
37 df-ima 5127 . . . . . . . . . . . . . . . 16  |-  ( f
" y )  =  ran  ( f  |`  y )
3837eqimss2i 3660 . . . . . . . . . . . . . . 15  |-  ran  (
f  |`  y )  C_  ( f " y
)
3938a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ran  ( f  |`  y
)  C_  ( f " y ) )
40 imassrn 5477 . . . . . . . . . . . . . . 15  |-  ( f
" y )  C_  ran  f
41 frn 6053 . . . . . . . . . . . . . . . 16  |-  ( f : U. J --> U. K  ->  ran  f  C_  U. K
)
4211, 41syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ran  f  C_  U. K )
4340, 42syl5ss 3614 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f " y ) 
C_  U. K )
44 cnrest2 21090 . . . . . . . . . . . . . 14  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  ( f  |`  y
)  C_  ( f " y )  /\  ( f " y
)  C_  U. K )  ->  ( ( f  |`  y )  e.  ( ( Jt  y )  Cn  K )  <->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f "
y ) ) ) ) )
4536, 39, 43, 44syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( f  |`  y
)  e.  ( ( Jt  y )  Cn  K
)  <->  ( f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f "
y ) ) ) ) )
4632, 45mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
f  |`  y )  e.  ( ( Jt  y )  Cn  ( Kt  ( f
" y ) ) ) )
47 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  x  e.  (𝑘Gen `  K ) )
48 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( Jt  y )  e.  Comp )
49 imacmp 21200 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( J  Cn  K )  /\  ( Jt  y )  e. 
Comp )  ->  ( Kt  ( f " y
) )  e.  Comp )
5028, 48, 49syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( Kt  ( f " y
) )  e.  Comp )
51 kgeni 21340 . . . . . . . . . . . . 13  |-  ( ( x  e.  (𝑘Gen `  K
)  /\  ( Kt  (
f " y ) )  e.  Comp )  ->  ( x  i^i  (
f " y ) )  e.  ( Kt  ( f " y ) ) )
5247, 50, 51syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
x  i^i  ( f " y ) )  e.  ( Kt  ( f
" y ) ) )
53 cnima 21069 . . . . . . . . . . . 12  |-  ( ( ( f  |`  y
)  e.  ( ( Jt  y )  Cn  ( Kt  ( f " y
) ) )  /\  ( x  i^i  (
f " y ) )  e.  ( Kt  ( f " y ) ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  e.  ( Jt  y ) )
5446, 52, 53syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  ( `' ( f  |`  y ) " (
x  i^i  ( f " y ) ) )  e.  ( Jt  y ) )
5526, 54eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  ( y  e. 
~P U. J  /\  ( Jt  y )  e.  Comp ) )  ->  (
( `' f "
x )  i^i  y
)  e.  ( Jt  y ) )
5655expr 643 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  ran 𝑘Gen  /\  K  e. 
Top )  /\  f  e.  ( J  Cn  K
) )  /\  x  e.  (𝑘Gen `  K ) )  /\  y  e.  ~P U. J )  ->  (
( Jt  y )  e. 
Comp  ->  ( ( `' f " x )  i^i  y )  e.  ( Jt  y ) ) )
5756ralrimiva 2966 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) )
58 kgentop 21345 . . . . . . . . . . 11  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  Top )
5958ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  J  e.  Top )
601toptopon 20722 . . . . . . . . . 10  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
6159, 60sylib 208 . . . . . . . . 9  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  J  e.  (TopOn `  U. J ) )
62 elkgen 21339 . . . . . . . . 9  |-  ( J  e.  (TopOn `  U. J )  ->  (
( `' f "
x )  e.  (𝑘Gen `  J )  <->  ( ( `' f " x
)  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) ) ) )
6361, 62syl 17 . . . . . . . 8  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( ( `' f " x )  e.  (𝑘Gen `  J )  <->  ( ( `' f " x
)  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( ( `' f "
x )  i^i  y
)  e.  ( Jt  y ) ) ) ) )
649, 57, 63mpbir2and 957 . . . . . . 7  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  e.  (𝑘Gen `  J ) )
65 kgenidm 21350 . . . . . . . 8  |-  ( J  e.  ran 𝑘Gen  ->  (𝑘Gen `  J
)  =  J )
6665ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  (𝑘Gen `  J )  =  J )
6764, 66eleqtrd 2703 . . . . . 6  |-  ( ( ( ( J  e. 
ran 𝑘Gen 
/\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  /\  x  e.  (𝑘Gen `  K ) )  ->  ( `' f
" x )  e.  J )
6867ralrimiva 2966 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J )
6958, 60sylib 208 . . . . . . 7  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  (TopOn `  U. J ) )
70 kgentopon 21341 . . . . . . . 8  |-  ( K  e.  (TopOn `  U. K )  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
7135, 70sylbi 207 . . . . . . 7  |-  ( K  e.  Top  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
72 iscn 21039 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )  ->  ( f  e.  ( J  Cn  (𝑘Gen `  K ) )  <->  ( f : U. J --> U. K  /\  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J ) ) )
7369, 71, 72syl2an 494 . . . . . 6  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (
f  e.  ( J  Cn  (𝑘Gen `  K ) )  <-> 
( f : U. J
--> U. K  /\  A. x  e.  (𝑘Gen `  K
) ( `' f
" x )  e.  J ) ) )
7473adantr 481 . . . . 5  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  ( f  e.  ( J  Cn  (𝑘Gen `  K ) )  <->  ( f : U. J --> U. K  /\  A. x  e.  (𝑘Gen `  K ) ( `' f " x )  e.  J ) ) )
754, 68, 74mpbir2and 957 . . . 4  |-  ( ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  /\  f  e.  ( J  Cn  K ) )  ->  f  e.  ( J  Cn  (𝑘Gen `  K
) ) )
7675ex 450 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (
f  e.  ( J  Cn  K )  -> 
f  e.  ( J  Cn  (𝑘Gen `  K ) ) ) )
7776ssrdv 3609 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  C_  ( J  Cn  (𝑘Gen `  K ) ) )
7871adantl 482 . . . 4  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  (𝑘Gen `  K )  e.  (TopOn `  U. K ) )
79 toponcom 20732 . . . 4  |-  ( ( K  e.  Top  /\  (𝑘Gen
`  K )  e.  (TopOn `  U. K ) )  ->  K  e.  (TopOn `  U. (𝑘Gen `  K
) ) )
8033, 78, 79syl2anc 693 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  e.  (TopOn `  U. (𝑘Gen `  K
) ) )
81 kgenss 21346 . . . 4  |-  ( K  e.  Top  ->  K  C_  (𝑘Gen `  K ) )
8281adantl 482 . . 3  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  K  C_  (𝑘Gen `  K ) )
83 eqid 2622 . . . 4  |-  U. (𝑘Gen `  K )  =  U. (𝑘Gen
`  K )
8483cnss2 21081 . . 3  |-  ( ( K  e.  (TopOn `  U. (𝑘Gen `  K ) )  /\  K  C_  (𝑘Gen `  K ) )  -> 
( J  Cn  (𝑘Gen `  K ) )  C_  ( J  Cn  K
) )
8580, 82, 84syl2anc 693 . 2  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  (𝑘Gen `  K ) ) 
C_  ( J  Cn  K ) )
8677, 85eqssd 3620 1  |-  ( ( J  e.  ran 𝑘Gen  /\  K  e.  Top )  ->  ( J  Cn  K )  =  ( J  Cn  (𝑘Gen `  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715    Cn ccn 21028   Compccmp 21189  𝑘Genckgen 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190  df-kgen 21337
This theorem is referenced by:  kgen2cn  21362  txkgen  21455  qtopkgen  21513
  Copyright terms: Public domain W3C validator