| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnn0 | Structured version Visualization version Unicode version | ||
| Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmsnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . 5
| |
| 2 | 1 | eldm 5321 |
. . . 4
|
| 3 | df-br 4654 |
. . . . . 6
| |
| 4 | opex 4932 |
. . . . . . 7
| |
| 5 | 4 | elsn 4192 |
. . . . . 6
|
| 6 | eqcom 2629 |
. . . . . 6
| |
| 7 | 3, 5, 6 | 3bitri 286 |
. . . . 5
|
| 8 | 7 | exbii 1774 |
. . . 4
|
| 9 | 2, 8 | bitr2i 265 |
. . 3
|
| 10 | 9 | exbii 1774 |
. 2
|
| 11 | elvv 5177 |
. 2
| |
| 12 | n0 3931 |
. 2
| |
| 13 | 10, 11, 12 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-dm 5124 |
| This theorem is referenced by: rnsnn0 5601 dmsn0 5602 dmsn0el 5604 relsn2 5605 1stnpr 7172 1st2val 7194 mpt2xopxnop0 7341 hashfun 13224 |
| Copyright terms: Public domain | W3C validator |