MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2val Structured version   Visualization version   Unicode version

Theorem 1st2val 7194
Description: Value of an alternate definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
1st2val  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
Distinct variable group:    x, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem 1st2val
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5177 . . 3  |-  ( A  e.  ( _V  X.  _V )  <->  E. w E. v  A  =  <. w ,  v >. )
2 fveq2 6191 . . . . . 6  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. ) )
3 df-ov 6653 . . . . . . 7  |-  ( w { <. <. x ,  y
>. ,  z >.  |  z  =  x }
v )  =  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. )
4 vex 3203 . . . . . . . 8  |-  w  e. 
_V
5 vex 3203 . . . . . . . 8  |-  v  e. 
_V
6 simpl 473 . . . . . . . . 9  |-  ( ( x  =  w  /\  y  =  v )  ->  x  =  w )
7 mpt2v 6750 . . . . . . . . . 10  |-  ( x  e.  _V ,  y  e.  _V  |->  x )  =  { <. <. x ,  y >. ,  z
>.  |  z  =  x }
87eqcomi 2631 . . . . . . . . 9  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( x  e.  _V ,  y  e.  _V  |->  x )
96, 8, 4ovmpt2a 6791 . . . . . . . 8  |-  ( ( w  e.  _V  /\  v  e.  _V )  ->  ( w { <. <.
x ,  y >. ,  z >.  |  z  =  x } v )  =  w )
104, 5, 9mp2an 708 . . . . . . 7  |-  ( w { <. <. x ,  y
>. ,  z >.  |  z  =  x }
v )  =  w
113, 10eqtr3i 2646 . . . . . 6  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. )  =  w
122, 11syl6eq 2672 . . . . 5  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  w )
134, 5op1std 7178 . . . . 5  |-  ( A  =  <. w ,  v
>.  ->  ( 1st `  A
)  =  w )
1412, 13eqtr4d 2659 . . . 4  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
1514exlimivv 1860 . . 3  |-  ( E. w E. v  A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
161, 15sylbi 207 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
17 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
18 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
1917, 18pm3.2i 471 . . . . . . . . 9  |-  ( x  e.  _V  /\  y  e.  _V )
20 ax6ev 1890 . . . . . . . . 9  |-  E. z 
z  =  x
2119, 202th 254 . . . . . . . 8  |-  ( ( x  e.  _V  /\  y  e.  _V )  <->  E. z  z  =  x )
2221opabbii 4717 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }  =  { <. x ,  y >.  |  E. z  z  =  x }
23 df-xp 5120 . . . . . . 7  |-  ( _V 
X.  _V )  =  { <. x ,  y >.  |  ( x  e. 
_V  /\  y  e.  _V ) }
24 dmoprab 6741 . . . . . . 7  |-  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  =  { <. x ,  y
>.  |  E. z 
z  =  x }
2522, 23, 243eqtr4ri 2655 . . . . . 6  |-  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  =  ( _V  X.  _V )
2625eleq2i 2693 . . . . 5  |-  ( A  e.  dom  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  <->  A  e.  ( _V  X.  _V )
)
27 ndmfv 6218 . . . . 5  |-  ( -.  A  e.  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  ->  ( { <. <. x ,  y >. ,  z
>.  |  z  =  x } `  A )  =  (/) )
2826, 27sylnbir 321 . . . 4  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  (/) )
29 dmsnn0 5600 . . . . . . . 8  |-  ( A  e.  ( _V  X.  _V )  <->  dom  { A }  =/=  (/) )
3029biimpri 218 . . . . . . 7  |-  ( dom 
{ A }  =/=  (/) 
->  A  e.  ( _V  X.  _V ) )
3130necon1bi 2822 . . . . . 6  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  dom  { A }  =  (/) )
3231unieqd 4446 . . . . 5  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  U. dom  { A }  =  U. (/) )
33 uni0 4465 . . . . 5  |-  U. (/)  =  (/)
3432, 33syl6eq 2672 . . . 4  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  U. dom  { A }  =  (/) )
3528, 34eqtr4d 2659 . . 3  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  U. dom  { A } )
36 1stval 7170 . . 3  |-  ( 1st `  A )  =  U. dom  { A }
3735, 36syl6eqr 2674 . 2  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
3816, 37pm2.61i 176 1  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183   U.cuni 4436   {copab 4712    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650   {coprab 6651    |-> cmpt2 6652   1stc1st 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator