| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > docaclN | Structured version Visualization version Unicode version | ||
| Description: Closure of subspace
orthocomplement for |
| Ref | Expression |
|---|---|
| docacl.h |
|
| docacl.t |
|
| docacl.i |
|
| docacl.n |
|
| Ref | Expression |
|---|---|
| docaclN |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | eqid 2622 |
. . 3
| |
| 4 | docacl.h |
. . 3
| |
| 5 | docacl.t |
. . 3
| |
| 6 | docacl.i |
. . 3
| |
| 7 | docacl.n |
. . 3
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | docavalN 36412 |
. 2
|
| 9 | 4, 6 | diaf11N 36338 |
. . . . 5
|
| 10 | f1ofun 6139 |
. . . . 5
| |
| 11 | 9, 10 | syl 17 |
. . . 4
|
| 12 | 11 | adantr 481 |
. . 3
|
| 13 | hllat 34650 |
. . . . . 6
| |
| 14 | 13 | ad2antrr 762 |
. . . . 5
|
| 15 | hlop 34649 |
. . . . . . . 8
| |
| 16 | 15 | ad2antrr 762 |
. . . . . . 7
|
| 17 | simpl 473 |
. . . . . . . . . 10
| |
| 18 | ssrab2 3687 |
. . . . . . . . . . 11
| |
| 19 | 18 | a1i 11 |
. . . . . . . . . 10
|
| 20 | 4, 5, 6 | dia1elN 36343 |
. . . . . . . . . . . . 13
|
| 21 | 20 | anim1i 592 |
. . . . . . . . . . . 12
|
| 22 | sseq2 3627 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | elrab 3363 |
. . . . . . . . . . . 12
|
| 24 | 21, 23 | sylibr 224 |
. . . . . . . . . . 11
|
| 25 | ne0i 3921 |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . 10
|
| 27 | 4, 6 | diaintclN 36347 |
. . . . . . . . . 10
|
| 28 | 17, 19, 26, 27 | syl12anc 1324 |
. . . . . . . . 9
|
| 29 | 4, 6 | diacnvclN 36340 |
. . . . . . . . 9
|
| 30 | 28, 29 | syldan 487 |
. . . . . . . 8
|
| 31 | eqid 2622 |
. . . . . . . . 9
| |
| 32 | 31, 4, 6 | diadmclN 36326 |
. . . . . . . 8
|
| 33 | 30, 32 | syldan 487 |
. . . . . . 7
|
| 34 | 31, 3 | opoccl 34481 |
. . . . . . 7
|
| 35 | 16, 33, 34 | syl2anc 693 |
. . . . . 6
|
| 36 | 31, 4 | lhpbase 35284 |
. . . . . . . 8
|
| 37 | 36 | ad2antlr 763 |
. . . . . . 7
|
| 38 | 31, 3 | opoccl 34481 |
. . . . . . 7
|
| 39 | 16, 37, 38 | syl2anc 693 |
. . . . . 6
|
| 40 | 31, 1 | latjcl 17051 |
. . . . . 6
|
| 41 | 14, 35, 39, 40 | syl3anc 1326 |
. . . . 5
|
| 42 | 31, 2 | latmcl 17052 |
. . . . 5
|
| 43 | 14, 41, 37, 42 | syl3anc 1326 |
. . . 4
|
| 44 | eqid 2622 |
. . . . . 6
| |
| 45 | 31, 44, 2 | latmle2 17077 |
. . . . 5
|
| 46 | 14, 41, 37, 45 | syl3anc 1326 |
. . . 4
|
| 47 | 31, 44, 4, 6 | diaeldm 36325 |
. . . . 5
|
| 48 | 47 | adantr 481 |
. . . 4
|
| 49 | 43, 46, 48 | mpbir2and 957 |
. . 3
|
| 50 | fvelrn 6352 |
. . 3
| |
| 51 | 12, 49, 50 | syl2anc 693 |
. 2
|
| 52 | 8, 51 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-disoa 36318 df-docaN 36409 |
| This theorem is referenced by: dvadiaN 36417 djaclN 36425 |
| Copyright terms: Public domain | W3C validator |