| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjfval | Structured version Visualization version Unicode version | ||
| Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dpjfval.1 |
|
| dpjfval.2 |
|
| dpjfval.p |
|
| dpjfval.q |
|
| Ref | Expression |
|---|---|
| dpjfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.p |
. 2
| |
| 2 | df-dpj 18395 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | simprr 796 |
. . . . . 6
| |
| 5 | 4 | dmeqd 5326 |
. . . . 5
|
| 6 | dpjfval.2 |
. . . . . 6
| |
| 7 | 6 | adantr 481 |
. . . . 5
|
| 8 | 5, 7 | eqtrd 2656 |
. . . 4
|
| 9 | simprl 794 |
. . . . . . 7
| |
| 10 | 9 | fveq2d 6195 |
. . . . . 6
|
| 11 | dpjfval.q |
. . . . . 6
| |
| 12 | 10, 11 | syl6eqr 2674 |
. . . . 5
|
| 13 | 4 | fveq1d 6193 |
. . . . 5
|
| 14 | 8 | difeq1d 3727 |
. . . . . . 7
|
| 15 | 4, 14 | reseq12d 5397 |
. . . . . 6
|
| 16 | 9, 15 | oveq12d 6668 |
. . . . 5
|
| 17 | 12, 13, 16 | oveq123d 6671 |
. . . 4
|
| 18 | 8, 17 | mpteq12dv 4733 |
. . 3
|
| 19 | simpr 477 |
. . . . 5
| |
| 20 | 19 | sneqd 4189 |
. . . 4
|
| 21 | 20 | imaeq2d 5466 |
. . 3
|
| 22 | dpjfval.1 |
. . . 4
| |
| 23 | dprdgrp 18404 |
. . . 4
| |
| 24 | 22, 23 | syl 17 |
. . 3
|
| 25 | reldmdprd 18396 |
. . . . 5
| |
| 26 | elrelimasn 5489 |
. . . . 5
| |
| 27 | 25, 26 | ax-mp 5 |
. . . 4
|
| 28 | 22, 27 | sylibr 224 |
. . 3
|
| 29 | 22, 6 | dprddomcld 18400 |
. . . 4
|
| 30 | mptexg 6484 |
. . . 4
| |
| 31 | 29, 30 | syl 17 |
. . 3
|
| 32 | 3, 18, 21, 24, 28, 31 | ovmpt2dx 6787 |
. 2
|
| 33 | 1, 32 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-ixp 7909 df-dprd 18394 df-dpj 18395 |
| This theorem is referenced by: dpjval 18455 |
| Copyright terms: Public domain | W3C validator |