MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjfval Structured version   Visualization version   Unicode version

Theorem dpjfval 18454
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1  |-  ( ph  ->  G dom DProd  S )
dpjfval.2  |-  ( ph  ->  dom  S  =  I )
dpjfval.p  |-  P  =  ( GdProj S )
dpjfval.q  |-  Q  =  ( proj1 `  G )
Assertion
Ref Expression
dpjfval  |-  ( ph  ->  P  =  ( i  e.  I  |->  ( ( S `  i ) Q ( G DProd  ( S  |`  ( I  \  { i } ) ) ) ) ) )
Distinct variable groups:    i, G    ph, i    i, I    S, i
Allowed substitution hints:    P( i)    Q( i)

Proof of Theorem dpjfval
Dummy variables  g 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjfval.p . 2  |-  P  =  ( GdProj S )
2 df-dpj 18395 . . . 4  |- dProj  =  ( g  e.  Grp , 
s  e.  ( dom DProd  " { g } ) 
|->  ( i  e.  dom  s  |->  ( ( s `
 i ) (
proj1 `  g
) ( g DProd  (
s  |`  ( dom  s  \  { i } ) ) ) ) ) )
32a1i 11 . . 3  |-  ( ph  -> dProj  =  ( g  e. 
Grp ,  s  e.  ( dom DProd  " { g } )  |->  ( i  e. 
dom  s  |->  ( ( s `  i ) ( proj1 `  g ) ( g DProd 
( s  |`  ( dom  s  \  { i } ) ) ) ) ) ) )
4 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
s  =  S )
54dmeqd 5326 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  ->  dom  s  =  dom  S )
6 dpjfval.2 . . . . . 6  |-  ( ph  ->  dom  S  =  I )
76adantr 481 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  ->  dom  S  =  I )
85, 7eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  ->  dom  s  =  I
)
9 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
g  =  G )
109fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( proj1 `  g
)  =  ( proj1 `  G )
)
11 dpjfval.q . . . . . 6  |-  Q  =  ( proj1 `  G )
1210, 11syl6eqr 2674 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( proj1 `  g
)  =  Q )
134fveq1d 6193 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( s `  i
)  =  ( S `
 i ) )
148difeq1d 3727 . . . . . . 7  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( dom  s  \  { i } )  =  ( I  \  { i } ) )
154, 14reseq12d 5397 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( s  |`  ( dom  s  \  { i } ) )  =  ( S  |`  (
I  \  { i } ) ) )
169, 15oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( g DProd  ( s  |`  ( dom  s  \  { i } ) ) )  =  ( G DProd  ( S  |`  ( I  \  { i } ) ) ) )
1712, 13, 16oveq123d 6671 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( ( s `  i ) ( proj1 `  g )
( g DProd  ( s  |`  ( dom  s  \  { i } ) ) ) )  =  ( ( S `  i ) Q ( G DProd  ( S  |`  ( I  \  { i } ) ) ) ) )
188, 17mpteq12dv 4733 . . 3  |-  ( (
ph  /\  ( g  =  G  /\  s  =  S ) )  -> 
( i  e.  dom  s  |->  ( ( s `
 i ) (
proj1 `  g
) ( g DProd  (
s  |`  ( dom  s  \  { i } ) ) ) ) )  =  ( i  e.  I  |->  ( ( S `
 i ) Q ( G DProd  ( S  |`  ( I  \  {
i } ) ) ) ) ) )
19 simpr 477 . . . . 5  |-  ( (
ph  /\  g  =  G )  ->  g  =  G )
2019sneqd 4189 . . . 4  |-  ( (
ph  /\  g  =  G )  ->  { g }  =  { G } )
2120imaeq2d 5466 . . 3  |-  ( (
ph  /\  g  =  G )  ->  ( dom DProd 
" { g } )  =  ( dom DProd  " { G } ) )
22 dpjfval.1 . . . 4  |-  ( ph  ->  G dom DProd  S )
23 dprdgrp 18404 . . . 4  |-  ( G dom DProd  S  ->  G  e. 
Grp )
2422, 23syl 17 . . 3  |-  ( ph  ->  G  e.  Grp )
25 reldmdprd 18396 . . . . 5  |-  Rel  dom DProd
26 elrelimasn 5489 . . . . 5  |-  ( Rel 
dom DProd  ->  ( S  e.  ( dom DProd  " { G } )  <->  G dom DProd  S ) )
2725, 26ax-mp 5 . . . 4  |-  ( S  e.  ( dom DProd  " { G } )  <->  G dom DProd  S )
2822, 27sylibr 224 . . 3  |-  ( ph  ->  S  e.  ( dom DProd  " { G } ) )
2922, 6dprddomcld 18400 . . . 4  |-  ( ph  ->  I  e.  _V )
30 mptexg 6484 . . . 4  |-  ( I  e.  _V  ->  (
i  e.  I  |->  ( ( S `  i
) Q ( G DProd 
( S  |`  (
I  \  { i } ) ) ) ) )  e.  _V )
3129, 30syl 17 . . 3  |-  ( ph  ->  ( i  e.  I  |->  ( ( S `  i ) Q ( G DProd  ( S  |`  ( I  \  { i } ) ) ) ) )  e.  _V )
323, 18, 21, 24, 28, 31ovmpt2dx 6787 . 2  |-  ( ph  ->  ( GdProj S )  =  ( i  e.  I  |->  ( ( S `
 i ) Q ( G DProd  ( S  |`  ( I  \  {
i } ) ) ) ) ) )
331, 32syl5eq 2668 1  |-  ( ph  ->  P  =  ( i  e.  I  |->  ( ( S `  i ) Q ( G DProd  ( S  |`  ( I  \  { i } ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   "cima 5117   Rel wrel 5119   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Grpcgrp 17422   proj1cpj1 18050   DProd cdprd 18392  dProjcdpj 18393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-dprd 18394  df-dpj 18395
This theorem is referenced by:  dpjval  18455
  Copyright terms: Public domain W3C validator