Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpval Structured version   Visualization version   Unicode version

Theorem dpval 29597
Description: Define the value of the decimal point operator. See df-dp 29596. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
dpval  |-  ( ( A  e.  NN0  /\  B  e.  RR )  ->  ( A period B )  = _ A B )

Proof of Theorem dpval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dp2 29578 . . 3  |- _ x y  =  ( x  +  ( y  / ; 1 0 ) )
2 oveq1 6657 . . 3  |-  ( x  =  A  ->  (
x  +  ( y  / ; 1 0 ) )  =  ( A  +  ( y  / ; 1 0 ) ) )
31, 2syl5eq 2668 . 2  |-  ( x  =  A  -> _ x y  =  ( A  +  ( y  / ; 1 0 ) ) )
4 oveq1 6657 . . . 4  |-  ( y  =  B  ->  (
y  / ; 1 0 )  =  ( B  / ; 1 0 ) )
54oveq2d 6666 . . 3  |-  ( y  =  B  ->  ( A  +  ( y  / ; 1 0 ) )  =  ( A  +  ( B  / ; 1 0 ) ) )
6 df-dp2 29578 . . 3  |- _ A B  =  ( A  +  ( B  / ; 1 0 ) )
75, 6syl6eqr 2674 . 2  |-  ( y  =  B  ->  ( A  +  ( y  / ; 1 0 ) )  = _ A B )
8 df-dp 29596 . 2  |-  period  =  ( x  e.  NN0 , 
y  e.  RR  |-> _ x y )
96ovexi 6679 . 2  |- _ A B  e.  _V
103, 7, 8, 9ovmpt2 6796 1  |-  ( ( A  e.  NN0  /\  B  e.  RR )  ->  ( A period B )  = _ A B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    / cdiv 10684   NN0cn0 11292  ;cdc 11493  _cdp2 29577   periodcdp 29595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-dp2 29578  df-dp 29596
This theorem is referenced by:  dpcl  29598  dpfrac1  29599  dpfrac1OLD  29600  dpval2  29601  dpmul1000  29607  dpadd2  29618
  Copyright terms: Public domain W3C validator