Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngoi Structured version   Visualization version   Unicode version

Theorem drngoi 33750
Description: The properties of a division ring. (Contributed by NM, 4-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
drngi.1  |-  G  =  ( 1st `  R
)
drngi.2  |-  H  =  ( 2nd `  R
)
drngi.3  |-  X  =  ran  G
drngi.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
drngoi  |-  ( R  e.  DivRingOps  ->  ( R  e.  RingOps 
/\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp ) )

Proof of Theorem drngoi
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4402 . . . . . 6  |-  ( g  =  ( 1st `  R
)  ->  <. g ,  h >.  =  <. ( 1st `  R ) ,  h >. )
21eleq1d 2686 . . . . 5  |-  ( g  =  ( 1st `  R
)  ->  ( <. g ,  h >.  e.  RingOps  <->  <. ( 1st `  R ) ,  h >.  e.  RingOps ) )
3 id 22 . . . . . . . . . . . 12  |-  ( g  =  ( 1st `  R
)  ->  g  =  ( 1st `  R ) )
4 drngi.1 . . . . . . . . . . . 12  |-  G  =  ( 1st `  R
)
53, 4syl6eqr 2674 . . . . . . . . . . 11  |-  ( g  =  ( 1st `  R
)  ->  g  =  G )
65rneqd 5353 . . . . . . . . . 10  |-  ( g  =  ( 1st `  R
)  ->  ran  g  =  ran  G )
7 drngi.3 . . . . . . . . . 10  |-  X  =  ran  G
86, 7syl6eqr 2674 . . . . . . . . 9  |-  ( g  =  ( 1st `  R
)  ->  ran  g  =  X )
95fveq2d 6195 . . . . . . . . . . 11  |-  ( g  =  ( 1st `  R
)  ->  (GId `  g
)  =  (GId `  G ) )
10 drngi.4 . . . . . . . . . . 11  |-  Z  =  (GId `  G )
119, 10syl6eqr 2674 . . . . . . . . . 10  |-  ( g  =  ( 1st `  R
)  ->  (GId `  g
)  =  Z )
1211sneqd 4189 . . . . . . . . 9  |-  ( g  =  ( 1st `  R
)  ->  { (GId `  g ) }  =  { Z } )
138, 12difeq12d 3729 . . . . . . . 8  |-  ( g  =  ( 1st `  R
)  ->  ( ran  g  \  { (GId `  g ) } )  =  ( X  \  { Z } ) )
1413sqxpeqd 5141 . . . . . . 7  |-  ( g  =  ( 1st `  R
)  ->  ( ( ran  g  \  { (GId
`  g ) } )  X.  ( ran  g  \  { (GId
`  g ) } ) )  =  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )
1514reseq2d 5396 . . . . . 6  |-  ( g  =  ( 1st `  R
)  ->  ( h  |`  ( ( ran  g  \  { (GId `  g
) } )  X.  ( ran  g  \  { (GId `  g ) } ) ) )  =  ( h  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )
1615eleq1d 2686 . . . . 5  |-  ( g  =  ( 1st `  R
)  ->  ( (
h  |`  ( ( ran  g  \  { (GId
`  g ) } )  X.  ( ran  g  \  { (GId
`  g ) } ) ) )  e. 
GrpOp 
<->  ( h  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )
172, 16anbi12d 747 . . . 4  |-  ( g  =  ( 1st `  R
)  ->  ( ( <. g ,  h >.  e.  RingOps 
/\  ( h  |`  ( ( ran  g  \  { (GId `  g
) } )  X.  ( ran  g  \  { (GId `  g ) } ) ) )  e.  GrpOp )  <->  ( <. ( 1st `  R ) ,  h >.  e.  RingOps  /\  ( h  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) ) )
18 opeq2 4403 . . . . . . 7  |-  ( h  =  ( 2nd `  R
)  ->  <. ( 1st `  R ) ,  h >.  =  <. ( 1st `  R
) ,  ( 2nd `  R ) >. )
1918eleq1d 2686 . . . . . 6  |-  ( h  =  ( 2nd `  R
)  ->  ( <. ( 1st `  R ) ,  h >.  e.  RingOps  <->  <. ( 1st `  R ) ,  ( 2nd `  R )
>.  e.  RingOps ) )
2019anbi1d 741 . . . . 5  |-  ( h  =  ( 2nd `  R
)  ->  ( ( <. ( 1st `  R
) ,  h >.  e.  RingOps 
/\  ( h  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp )  <->  ( <. ( 1st `  R ) ,  ( 2nd `  R
) >.  e.  RingOps  /\  (
h  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp ) ) )
21 id 22 . . . . . . . . 9  |-  ( h  =  ( 2nd `  R
)  ->  h  =  ( 2nd `  R ) )
22 drngi.2 . . . . . . . . 9  |-  H  =  ( 2nd `  R
)
2321, 22syl6reqr 2675 . . . . . . . 8  |-  ( h  =  ( 2nd `  R
)  ->  H  =  h )
2423reseq1d 5395 . . . . . . 7  |-  ( h  =  ( 2nd `  R
)  ->  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  =  ( h  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )
2524eleq1d 2686 . . . . . 6  |-  ( h  =  ( 2nd `  R
)  ->  ( ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp 
<->  ( h  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )
2625anbi2d 740 . . . . 5  |-  ( h  =  ( 2nd `  R
)  ->  ( ( <. ( 1st `  R
) ,  ( 2nd `  R ) >.  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  <->  ( <. ( 1st `  R ) ,  ( 2nd `  R
) >.  e.  RingOps  /\  (
h  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp ) ) )
2720, 26bitr4d 271 . . . 4  |-  ( h  =  ( 2nd `  R
)  ->  ( ( <. ( 1st `  R
) ,  h >.  e.  RingOps 
/\  ( h  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp )  <->  ( <. ( 1st `  R ) ,  ( 2nd `  R
) >.  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp ) ) )
2817, 27elopabi 7231 . . 3  |-  ( R  e.  { <. g ,  h >.  |  ( <. g ,  h >.  e.  RingOps 
/\  ( h  |`  ( ( ran  g  \  { (GId `  g
) } )  X.  ( ran  g  \  { (GId `  g ) } ) ) )  e.  GrpOp ) }  ->  (
<. ( 1st `  R
) ,  ( 2nd `  R ) >.  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )
29 df-drngo 33748 . . 3  |-  DivRingOps  =  { <. g ,  h >.  |  ( <. g ,  h >.  e.  RingOps  /\  ( h  |`  ( ( ran  g  \  { (GId `  g
) } )  X.  ( ran  g  \  { (GId `  g ) } ) ) )  e.  GrpOp ) }
3028, 29eleq2s 2719 . 2  |-  ( R  e.  DivRingOps  ->  ( <. ( 1st `  R ) ,  ( 2nd `  R
) >.  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp ) )
3129relopabi 5245 . . . . 5  |-  Rel  DivRingOps
32 1st2nd 7214 . . . . 5  |-  ( ( Rel  DivRingOps  /\  R  e.  DivRingOps )  ->  R  =  <. ( 1st `  R
) ,  ( 2nd `  R ) >. )
3331, 32mpan 706 . . . 4  |-  ( R  e.  DivRingOps  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
3433eleq1d 2686 . . 3  |-  ( R  e.  DivRingOps  ->  ( R  e.  RingOps  <->  <.
( 1st `  R
) ,  ( 2nd `  R ) >.  e.  RingOps ) )
3534anbi1d 741 . 2  |-  ( R  e.  DivRingOps  ->  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp )  <->  ( <. ( 1st `  R ) ,  ( 2nd `  R
) >.  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp ) ) )
3630, 35mpbird 247 1  |-  ( R  e.  DivRingOps  ->  ( R  e.  RingOps 
/\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571   {csn 4177   <.cop 4183   {copab 4712    X. cxp 5112   ran crn 5115    |` cres 5116   Rel wrel 5119   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   GrpOpcgr 27343  GIdcgi 27344   RingOpscrngo 33693   DivRingOpscdrng 33747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169  df-drngo 33748
This theorem is referenced by:  dvrunz  33753  fldcrng  33803
  Copyright terms: Public domain W3C validator