| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isdivrngo | Structured version Visualization version Unicode version | ||
| Description: The predicate "is a division ring". (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isdivrngo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4654 |
. . . . 5
| |
| 2 | df-drngo 33748 |
. . . . . . 7
| |
| 3 | 2 | relopabi 5245 |
. . . . . 6
|
| 4 | 3 | brrelexi 5158 |
. . . . 5
|
| 5 | 1, 4 | sylbir 225 |
. . . 4
|
| 6 | 5 | anim1i 592 |
. . 3
|
| 7 | 6 | ancoms 469 |
. 2
|
| 8 | rngoablo2 33708 |
. . . . 5
| |
| 9 | elex 3212 |
. . . . 5
| |
| 10 | 8, 9 | syl 17 |
. . . 4
|
| 11 | 10 | ad2antrl 764 |
. . 3
|
| 12 | simpl 473 |
. . 3
| |
| 13 | 11, 12 | jca 554 |
. 2
|
| 14 | df-drngo 33748 |
. . . 4
| |
| 15 | 14 | eleq2i 2693 |
. . 3
|
| 16 | opeq1 4402 |
. . . . . 6
| |
| 17 | 16 | eleq1d 2686 |
. . . . 5
|
| 18 | rneq 5351 |
. . . . . . . . 9
| |
| 19 | fveq2 6191 |
. . . . . . . . . 10
| |
| 20 | 19 | sneqd 4189 |
. . . . . . . . 9
|
| 21 | 18, 20 | difeq12d 3729 |
. . . . . . . 8
|
| 22 | 21 | sqxpeqd 5141 |
. . . . . . 7
|
| 23 | 22 | reseq2d 5396 |
. . . . . 6
|
| 24 | 23 | eleq1d 2686 |
. . . . 5
|
| 25 | 17, 24 | anbi12d 747 |
. . . 4
|
| 26 | opeq2 4403 |
. . . . . 6
| |
| 27 | 26 | eleq1d 2686 |
. . . . 5
|
| 28 | reseq1 5390 |
. . . . . 6
| |
| 29 | 28 | eleq1d 2686 |
. . . . 5
|
| 30 | 27, 29 | anbi12d 747 |
. . . 4
|
| 31 | 25, 30 | opelopabg 4993 |
. . 3
|
| 32 | 15, 31 | syl5bb 272 |
. 2
|
| 33 | 7, 13, 32 | pm5.21nd 941 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-1st 7168 df-2nd 7169 df-rngo 33694 df-drngo 33748 |
| This theorem is referenced by: zrdivrng 33752 isdrngo1 33755 |
| Copyright terms: Public domain | W3C validator |