MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrfval Structured version   Visualization version   Unicode version

Theorem dvrfval 18684
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrval.b  |-  B  =  ( Base `  R
)
dvrval.t  |-  .x.  =  ( .r `  R )
dvrval.u  |-  U  =  (Unit `  R )
dvrval.i  |-  I  =  ( invr `  R
)
dvrval.d  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
dvrfval  |-  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )
Distinct variable groups:    x, y, B    x, I, y    x, R, y    x,  .x. , y    x, U, y
Allowed substitution hints:    ./ ( x, y)

Proof of Theorem dvrfval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 dvrval.d . 2  |-  ./  =  (/r
`  R )
2 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 dvrval.b . . . . . 6  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  =  B )
5 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
6 dvrval.u . . . . . 6  |-  U  =  (Unit `  R )
75, 6syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  (Unit `  r )  =  U )
8 fveq2 6191 . . . . . . 7  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
9 dvrval.t . . . . . . 7  |-  .x.  =  ( .r `  R )
108, 9syl6eqr 2674 . . . . . 6  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
11 eqidd 2623 . . . . . 6  |-  ( r  =  R  ->  x  =  x )
12 fveq2 6191 . . . . . . . 8  |-  ( r  =  R  ->  ( invr `  r )  =  ( invr `  R
) )
13 dvrval.i . . . . . . . 8  |-  I  =  ( invr `  R
)
1412, 13syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  ( invr `  r )  =  I )
1514fveq1d 6193 . . . . . 6  |-  ( r  =  R  ->  (
( invr `  r ) `  y )  =  ( I `  y ) )
1610, 11, 15oveq123d 6671 . . . . 5  |-  ( r  =  R  ->  (
x ( .r `  r ) ( (
invr `  r ) `  y ) )  =  ( x  .x.  (
I `  y )
) )
174, 7, 16mpt2eq123dv 6717 . . . 4  |-  ( r  =  R  ->  (
x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
18 df-dvr 18683 . . . 4  |- /r  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) ) )
19 fvex 6201 . . . . . 6  |-  ( Base `  R )  e.  _V
203, 19eqeltri 2697 . . . . 5  |-  B  e. 
_V
21 fvex 6201 . . . . . 6  |-  (Unit `  R )  e.  _V
226, 21eqeltri 2697 . . . . 5  |-  U  e. 
_V
2320, 22mpt2ex 7247 . . . 4  |-  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) )  e.  _V
2417, 18, 23fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  (/r `  R )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
25 fvprc 6185 . . . 4  |-  ( -.  R  e.  _V  ->  (/r `  R )  =  (/) )
26 fvprc 6185 . . . . . . 7  |-  ( -.  R  e.  _V  ->  (
Base `  R )  =  (/) )
273, 26syl5eq 2668 . . . . . 6  |-  ( -.  R  e.  _V  ->  B  =  (/) )
28 eqid 2622 . . . . . 6  |-  U  =  U
29 mpt2eq12 6715 . . . . . 6  |-  ( ( B  =  (/)  /\  U  =  U )  ->  (
x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) ) )
3027, 28, 29sylancl 694 . . . . 5  |-  ( -.  R  e.  _V  ->  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) ) )
31 mpt20 6725 . . . . 5  |-  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) )  =  (/)
3230, 31syl6eq 2672 . . . 4  |-  ( -.  R  e.  _V  ->  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  (/) )
3325, 32eqtr4d 2659 . . 3  |-  ( -.  R  e.  _V  ->  (/r `  R )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
3424, 33pm2.61i 176 . 2  |-  (/r `  R
)  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) )
351, 34eqtri 2644 1  |-  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   .rcmulr 15942  Unitcui 18639   invrcinvr 18671  /rcdvr 18682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-dvr 18683
This theorem is referenced by:  dvrval  18685  cnflddiv  19776  dvrcn  21987
  Copyright terms: Public domain W3C validator