MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt20 Structured version   Visualization version   Unicode version

Theorem mpt20 6725
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
mpt20  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)

Proof of Theorem mpt20
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt2 6655 . 2  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) }
2 df-oprab 6654 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) ) }
3 noel 3919 . . . . . . 7  |-  -.  x  e.  (/)
4 simprll 802 . . . . . . 7  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )  ->  x  e.  (/) )
53, 4mto 188 . . . . . 6  |-  -.  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
65nex 1731 . . . . 5  |-  -.  E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
76nex 1731 . . . 4  |-  -.  E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
87nex 1731 . . 3  |-  -.  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  (
( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
98abf 3978 . 2  |-  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) ) }  =  (/)
101, 2, 93eqtri 2648 1  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   (/)c0 3915   <.cop 4183   {coprab 6651    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  homffval  16350  comfffval  16358  natfval  16606  coafval  16714  xpchomfval  16819  xpccofval  16822  plusffval  17247  grpsubfval  17464  oppglsm  18057  dvrfval  18684  scaffval  18881  psrmulr  19384  ipffval  19993  marrepfval  20366  marepvfval  20371  d0mat2pmat  20543  pcofval  22810  mendplusgfval  37755  mendmulrfval  37757  mendvscafval  37760
  Copyright terms: Public domain W3C validator