| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopovtrn | Structured version Visualization version Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopopr.com |
|
| ecopopr.cl |
|
| ecopopr.ass |
|
| ecopopr.can |
|
| Ref | Expression |
|---|---|
| ecopovtrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . . . 7
| |
| 2 | opabssxp 5193 |
. . . . . . 7
| |
| 3 | 1, 2 | eqsstri 3635 |
. . . . . 6
|
| 4 | 3 | brel 5168 |
. . . . 5
|
| 5 | 4 | simpld 475 |
. . . 4
|
| 6 | 3 | brel 5168 |
. . . 4
|
| 7 | 5, 6 | anim12i 590 |
. . 3
|
| 8 | 3anass 1042 |
. . 3
| |
| 9 | 7, 8 | sylibr 224 |
. 2
|
| 10 | eqid 2622 |
. . 3
| |
| 11 | breq1 4656 |
. . . . 5
| |
| 12 | 11 | anbi1d 741 |
. . . 4
|
| 13 | breq1 4656 |
. . . 4
| |
| 14 | 12, 13 | imbi12d 334 |
. . 3
|
| 15 | breq2 4657 |
. . . . 5
| |
| 16 | breq1 4656 |
. . . . 5
| |
| 17 | 15, 16 | anbi12d 747 |
. . . 4
|
| 18 | 17 | imbi1d 331 |
. . 3
|
| 19 | breq2 4657 |
. . . . 5
| |
| 20 | 19 | anbi2d 740 |
. . . 4
|
| 21 | breq2 4657 |
. . . 4
| |
| 22 | 20, 21 | imbi12d 334 |
. . 3
|
| 23 | 1 | ecopoveq 7848 |
. . . . . . . 8
|
| 24 | 23 | 3adant3 1081 |
. . . . . . 7
|
| 25 | 1 | ecopoveq 7848 |
. . . . . . . 8
|
| 26 | 25 | 3adant1 1079 |
. . . . . . 7
|
| 27 | 24, 26 | anbi12d 747 |
. . . . . 6
|
| 28 | oveq12 6659 |
. . . . . . 7
| |
| 29 | vex 3203 |
. . . . . . . 8
| |
| 30 | vex 3203 |
. . . . . . . 8
| |
| 31 | vex 3203 |
. . . . . . . 8
| |
| 32 | ecopopr.com |
. . . . . . . 8
| |
| 33 | ecopopr.ass |
. . . . . . . 8
| |
| 34 | vex 3203 |
. . . . . . . 8
| |
| 35 | 29, 30, 31, 32, 33, 34 | caov411 6866 |
. . . . . . 7
|
| 36 | vex 3203 |
. . . . . . . . 9
| |
| 37 | vex 3203 |
. . . . . . . . 9
| |
| 38 | 36, 30, 29, 32, 33, 37 | caov411 6866 |
. . . . . . . 8
|
| 39 | 36, 30, 29, 32, 33, 37 | caov4 6865 |
. . . . . . . 8
|
| 40 | 38, 39 | eqtr3i 2646 |
. . . . . . 7
|
| 41 | 28, 35, 40 | 3eqtr4g 2681 |
. . . . . 6
|
| 42 | 27, 41 | syl6bi 243 |
. . . . 5
|
| 43 | ecopopr.cl |
. . . . . . . . . . 11
| |
| 44 | 43 | caovcl 6828 |
. . . . . . . . . 10
|
| 45 | 43 | caovcl 6828 |
. . . . . . . . . 10
|
| 46 | ovex 6678 |
. . . . . . . . . . 11
| |
| 47 | ecopopr.can |
. . . . . . . . . . 11
| |
| 48 | 46, 47 | caovcan 6838 |
. . . . . . . . . 10
|
| 49 | 44, 45, 48 | syl2an 494 |
. . . . . . . . 9
|
| 50 | 49 | 3impb 1260 |
. . . . . . . 8
|
| 51 | 50 | 3com12 1269 |
. . . . . . 7
|
| 52 | 51 | 3adant3l 1322 |
. . . . . 6
|
| 53 | 52 | 3adant1r 1319 |
. . . . 5
|
| 54 | 42, 53 | syld 47 |
. . . 4
|
| 55 | 1 | ecopoveq 7848 |
. . . . 5
|
| 56 | 55 | 3adant2 1080 |
. . . 4
|
| 57 | 54, 56 | sylibrd 249 |
. . 3
|
| 58 | 10, 14, 18, 22, 57 | 3optocl 5197 |
. 2
|
| 59 | 9, 58 | mpcom 38 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: ecopover 7851 ecopoverOLD 7852 |
| Copyright terms: Public domain | W3C validator |