MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopover Structured version   Visualization version   Unicode version

Theorem ecopover 7851
Description: Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
Hypotheses
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
ecopopr.com  |-  ( x 
.+  y )  =  ( y  .+  x
)
ecopopr.cl  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
ecopopr.ass  |-  ( ( x  .+  y ) 
.+  z )  =  ( x  .+  (
y  .+  z )
)
ecopopr.can  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
Assertion
Ref Expression
ecopover  |-  .~  Er  ( S  X.  S
)
Distinct variable groups:    x, y,
z, w, v, u, 
.+    x, S, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y, z, w, v, u)

Proof of Theorem ecopover
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . 3  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
21relopabi 5245 . 2  |-  Rel  .~
3 ecopopr.com . . 3  |-  ( x 
.+  y )  =  ( y  .+  x
)
41, 3ecopovsym 7849 . 2  |-  ( f  .~  g  ->  g  .~  f )
5 ecopopr.cl . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
6 ecopopr.ass . . 3  |-  ( ( x  .+  y ) 
.+  z )  =  ( x  .+  (
y  .+  z )
)
7 ecopopr.can . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
81, 3, 5, 6, 7ecopovtrn 7850 . 2  |-  ( ( f  .~  g  /\  g  .~  h )  -> 
f  .~  h )
9 vex 3203 . . . . . . . . 9  |-  g  e. 
_V
10 vex 3203 . . . . . . . . 9  |-  h  e. 
_V
119, 10, 3caovcom 6831 . . . . . . . 8  |-  ( g 
.+  h )  =  ( h  .+  g
)
121ecopoveq 7848 . . . . . . . 8  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( <. g ,  h >.  .~  <. g ,  h >.  <-> 
( g  .+  h
)  =  ( h 
.+  g ) ) )
1311, 12mpbiri 248 . . . . . . 7  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  <. g ,  h >.  .~ 
<. g ,  h >. )
1413anidms 677 . . . . . 6  |-  ( ( g  e.  S  /\  h  e.  S )  -> 
<. g ,  h >.  .~ 
<. g ,  h >. )
1514rgen2a 2977 . . . . 5  |-  A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~  <. g ,  h >.
16 breq12 4658 . . . . . . 7  |-  ( ( f  =  <. g ,  h >.  /\  f  =  <. g ,  h >. )  ->  ( f  .~  f  <->  <. g ,  h >.  .~  <. g ,  h >. ) )
1716anidms 677 . . . . . 6  |-  ( f  =  <. g ,  h >.  ->  ( f  .~  f 
<-> 
<. g ,  h >.  .~ 
<. g ,  h >. ) )
1817ralxp 5263 . . . . 5  |-  ( A. f  e.  ( S  X.  S ) f  .~  f 
<-> 
A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~ 
<. g ,  h >. )
1915, 18mpbir 221 . . . 4  |-  A. f  e.  ( S  X.  S
) f  .~  f
2019rspec 2931 . . 3  |-  ( f  e.  ( S  X.  S )  ->  f  .~  f )
21 opabssxp 5193 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .+  u
)  =  ( w 
.+  v ) ) ) }  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
221, 21eqsstri 3635 . . . . 5  |-  .~  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
2322ssbri 4697 . . . 4  |-  ( f  .~  f  ->  f
( ( S  X.  S )  X.  ( S  X.  S ) ) f )
24 brxp 5147 . . . . 5  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  <->  ( f  e.  ( S  X.  S
)  /\  f  e.  ( S  X.  S
) ) )
2524simplbi 476 . . . 4  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  ->  f  e.  ( S  X.  S
) )
2623, 25syl 17 . . 3  |-  ( f  .~  f  ->  f  e.  ( S  X.  S
) )
2720, 26impbii 199 . 2  |-  ( f  e.  ( S  X.  S )  <->  f  .~  f )
282, 4, 8, 27iseri 7769 1  |-  .~  Er  ( S  X.  S
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   {copab 4712    X. cxp 5112  (class class class)co 6650    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-er 7742
This theorem is referenced by:  enqer  9743  enrer  9886
  Copyright terms: Public domain W3C validator