| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopover | Structured version Visualization version Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopopr.com |
|
| ecopopr.cl |
|
| ecopopr.ass |
|
| ecopopr.can |
|
| Ref | Expression |
|---|---|
| ecopover |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . 3
| |
| 2 | 1 | relopabi 5245 |
. 2
|
| 3 | ecopopr.com |
. . 3
| |
| 4 | 1, 3 | ecopovsym 7849 |
. 2
|
| 5 | ecopopr.cl |
. . 3
| |
| 6 | ecopopr.ass |
. . 3
| |
| 7 | ecopopr.can |
. . 3
| |
| 8 | 1, 3, 5, 6, 7 | ecopovtrn 7850 |
. 2
|
| 9 | vex 3203 |
. . . . . . . . 9
| |
| 10 | vex 3203 |
. . . . . . . . 9
| |
| 11 | 9, 10, 3 | caovcom 6831 |
. . . . . . . 8
|
| 12 | 1 | ecopoveq 7848 |
. . . . . . . 8
|
| 13 | 11, 12 | mpbiri 248 |
. . . . . . 7
|
| 14 | 13 | anidms 677 |
. . . . . 6
|
| 15 | 14 | rgen2a 2977 |
. . . . 5
|
| 16 | breq12 4658 |
. . . . . . 7
| |
| 17 | 16 | anidms 677 |
. . . . . 6
|
| 18 | 17 | ralxp 5263 |
. . . . 5
|
| 19 | 15, 18 | mpbir 221 |
. . . 4
|
| 20 | 19 | rspec 2931 |
. . 3
|
| 21 | opabssxp 5193 |
. . . . . 6
| |
| 22 | 1, 21 | eqsstri 3635 |
. . . . 5
|
| 23 | 22 | ssbri 4697 |
. . . 4
|
| 24 | brxp 5147 |
. . . . 5
| |
| 25 | 24 | simplbi 476 |
. . . 4
|
| 26 | 23, 25 | syl 17 |
. . 3
|
| 27 | 20, 26 | impbii 199 |
. 2
|
| 28 | 2, 4, 8, 27 | iseri 7769 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-er 7742 |
| This theorem is referenced by: enqer 9743 enrer 9886 |
| Copyright terms: Public domain | W3C validator |