| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopovsym | Structured version Visualization version Unicode version | ||
| Description: Assuming the operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopopr.com |
|
| Ref | Expression |
|---|---|
| ecopovsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . 5
| |
| 2 | opabssxp 5193 |
. . . . 5
| |
| 3 | 1, 2 | eqsstri 3635 |
. . . 4
|
| 4 | 3 | brel 5168 |
. . 3
|
| 5 | eqid 2622 |
. . . 4
| |
| 6 | breq1 4656 |
. . . . 5
| |
| 7 | breq2 4657 |
. . . . 5
| |
| 8 | 6, 7 | bibi12d 335 |
. . . 4
|
| 9 | breq2 4657 |
. . . . 5
| |
| 10 | breq1 4656 |
. . . . 5
| |
| 11 | 9, 10 | bibi12d 335 |
. . . 4
|
| 12 | 1 | ecopoveq 7848 |
. . . . . 6
|
| 13 | vex 3203 |
. . . . . . . . 9
| |
| 14 | vex 3203 |
. . . . . . . . 9
| |
| 15 | ecopopr.com |
. . . . . . . . 9
| |
| 16 | 13, 14, 15 | caovcom 6831 |
. . . . . . . 8
|
| 17 | vex 3203 |
. . . . . . . . 9
| |
| 18 | vex 3203 |
. . . . . . . . 9
| |
| 19 | 17, 18, 15 | caovcom 6831 |
. . . . . . . 8
|
| 20 | 16, 19 | eqeq12i 2636 |
. . . . . . 7
|
| 21 | eqcom 2629 |
. . . . . . 7
| |
| 22 | 20, 21 | bitri 264 |
. . . . . 6
|
| 23 | 12, 22 | syl6bb 276 |
. . . . 5
|
| 24 | 1 | ecopoveq 7848 |
. . . . . 6
|
| 25 | 24 | ancoms 469 |
. . . . 5
|
| 26 | 23, 25 | bitr4d 271 |
. . . 4
|
| 27 | 5, 8, 11, 26 | 2optocl 5196 |
. . 3
|
| 28 | 4, 27 | syl 17 |
. 2
|
| 29 | 28 | ibi 256 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: ecopover 7851 ecopoverOLD 7852 |
| Copyright terms: Public domain | W3C validator |