MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brel Structured version   Visualization version   Unicode version

Theorem brel 5168
Description: Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brel.1  |-  R  C_  ( C  X.  D
)
Assertion
Ref Expression
brel  |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D )
)

Proof of Theorem brel
StepHypRef Expression
1 brel.1 . . 3  |-  R  C_  ( C  X.  D
)
21ssbri 4697 . 2  |-  ( A R B  ->  A
( C  X.  D
) B )
3 brxp 5147 . 2  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
42, 3sylib 208 1  |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    C_ wss 3574   class class class wbr 4653    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120
This theorem is referenced by:  brab2a  5194  soirri  5522  sotri  5523  sotri2  5525  sotri3  5526  ndmovord  6824  ndmovordi  6825  swoer  7772  brecop2  7841  ecopovsym  7849  ecopovtrn  7850  hartogslem1  8447  nlt1pi  9728  indpi  9729  nqerf  9752  ordpipq  9764  lterpq  9792  ltexnq  9797  ltbtwnnq  9800  ltrnq  9801  prnmadd  9819  genpcd  9828  nqpr  9836  1idpr  9851  ltexprlem4  9861  ltexpri  9865  ltaprlem  9866  prlem936  9869  reclem2pr  9870  reclem3pr  9871  reclem4pr  9872  suplem1pr  9874  suplem2pr  9875  supexpr  9876  recexsrlem  9924  addgt0sr  9925  mulgt0sr  9926  mappsrpr  9929  map2psrpr  9931  supsrlem  9932  supsr  9933  ltresr  9961  dfle2  11980  dflt2  11981  dvdszrcl  14988  letsr  17227  hmphtop  21581  vcex  27433  brtxp2  31988  brpprod3a  31993
  Copyright terms: Public domain W3C validator