MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbllema Structured version   Visualization version   Unicode version

Theorem efgcpbllema 18167
Description: Lemma for efgrelex 18164. Define an auxiliary equivalence relation  L such that  A L B if there are sequences from  A to  B passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgcpbllem.1  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A ++  i ) ++  B )  .~  (
( A ++  j ) ++  B ) ) }
Assertion
Ref Expression
efgcpbllema  |-  ( X L Y  <->  ( X  e.  W  /\  Y  e.  W  /\  ( ( A ++  X ) ++  B
)  .~  ( ( A ++  Y ) ++  B ) ) )
Distinct variable groups:    i, j, A    y, z    t, n, v, w, y, z   
i, m, n, t, v, w, x, M, j    i, k, T, j, m, t, x   
i, X, j    y,
i, z, W, j   
k, n, v, w, y, z, W, m, t, x    .~ , i, j, m, t, x, y, z    B, i, j    S, i, j    i, Y, j   
i, I, j, m, n, t, v, w, x, y, z    D, i, j, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    L( x, y, z, w, v, t, i, j, k, m, n)    M( y, z, k)    X( x, y, z, w, v, t, k, m, n)    Y( x, y, z, w, v, t, k, m, n)

Proof of Theorem efgcpbllema
StepHypRef Expression
1 oveq2 6658 . . . . 5  |-  ( i  =  X  ->  ( A ++  i )  =  ( A ++  X ) )
21oveq1d 6665 . . . 4  |-  ( i  =  X  ->  (
( A ++  i ) ++  B )  =  ( ( A ++  X ) ++  B ) )
3 oveq2 6658 . . . . 5  |-  ( j  =  Y  ->  ( A ++  j )  =  ( A ++  Y ) )
43oveq1d 6665 . . . 4  |-  ( j  =  Y  ->  (
( A ++  j ) ++  B )  =  ( ( A ++  Y ) ++  B ) )
52, 4breqan12d 4669 . . 3  |-  ( ( i  =  X  /\  j  =  Y )  ->  ( ( ( A ++  i ) ++  B )  .~  ( ( A ++  j ) ++  B )  <-> 
( ( A ++  X
) ++  B )  .~  ( ( A ++  Y
) ++  B ) ) )
6 efgcpbllem.1 . . . 4  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A ++  i ) ++  B )  .~  (
( A ++  j ) ++  B ) ) }
7 vex 3203 . . . . . . 7  |-  i  e. 
_V
8 vex 3203 . . . . . . 7  |-  j  e. 
_V
97, 8prss 4351 . . . . . 6  |-  ( ( i  e.  W  /\  j  e.  W )  <->  { i ,  j } 
C_  W )
109anbi1i 731 . . . . 5  |-  ( ( ( i  e.  W  /\  j  e.  W
)  /\  ( ( A ++  i ) ++  B )  .~  ( ( A ++  j ) ++  B ) )  <->  ( { i ,  j }  C_  W  /\  ( ( A ++  i ) ++  B )  .~  ( ( A ++  j ) ++  B ) ) )
1110opabbii 4717 . . . 4  |-  { <. i ,  j >.  |  ( ( i  e.  W  /\  j  e.  W
)  /\  ( ( A ++  i ) ++  B )  .~  ( ( A ++  j ) ++  B ) ) }  =  { <. i ,  j >.  |  ( { i ,  j }  C_  W  /\  ( ( A ++  i ) ++  B )  .~  ( ( A ++  j ) ++  B ) ) }
126, 11eqtr4i 2647 . . 3  |-  L  =  { <. i ,  j
>.  |  ( (
i  e.  W  /\  j  e.  W )  /\  ( ( A ++  i
) ++  B )  .~  ( ( A ++  j
) ++  B ) ) }
135, 12brab2a 5194 . 2  |-  ( X L Y  <->  ( ( X  e.  W  /\  Y  e.  W )  /\  ( ( A ++  X
) ++  B )  .~  ( ( A ++  Y
) ++  B ) ) )
14 df-3an 1039 . 2  |-  ( ( X  e.  W  /\  Y  e.  W  /\  ( ( A ++  X
) ++  B )  .~  ( ( A ++  Y
) ++  B ) )  <-> 
( ( X  e.  W  /\  Y  e.  W )  /\  (
( A ++  X ) ++  B )  .~  (
( A ++  Y ) ++  B ) ) )
1513, 14bitr4i 267 1  |-  ( X L Y  <->  ( X  e.  W  /\  Y  e.  W  /\  ( ( A ++  X ) ++  B
)  .~  ( ( A ++  Y ) ++  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  efgcpbllemb  18168  efgcpbl  18169
  Copyright terms: Public domain W3C validator