MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Visualization version   Unicode version

Theorem efgred2 18166
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgred2  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  .~  ( S `  B
)  <->  ( A ` 
0 )  =  ( B `  0 ) ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)

Proof of Theorem efgred2
Dummy variables  d 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . . . 8  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . . . 8  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . . . 8  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . . . 8  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsfo 18152 . . . . . . 7  |-  S : dom  S -onto-> W
8 fof 6115 . . . . . . 7  |-  ( S : dom  S -onto-> W  ->  S : dom  S --> W )
97, 8ax-mp 5 . . . . . 6  |-  S : dom  S --> W
109ffvelrni 6358 . . . . 5  |-  ( B  e.  dom  S  -> 
( S `  B
)  e.  W )
1110ad2antlr 763 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( S `  B )  e.  W
)
121, 2, 3, 4, 5, 6efgredeu 18165 . . . 4  |-  ( ( S `  B )  e.  W  ->  E! d  e.  D  d  .~  ( S `  B
) )
13 reurmo 3161 . . . 4  |-  ( E! d  e.  D  d  .~  ( S `  B )  ->  E* d  e.  D  d  .~  ( S `  B
) )
1411, 12, 133syl 18 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  E* d  e.  D  d  .~  ( S `  B ) )
151, 2, 3, 4, 5, 6efgsdm 18143 . . . . 5  |-  ( A  e.  dom  S  <->  ( A  e.  (Word  W  \  { (/)
} )  /\  ( A `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  A ) ) ( A `  i )  e.  ran  ( T `
 ( A `  ( i  -  1 ) ) ) ) )
1615simp2bi 1077 . . . 4  |-  ( A  e.  dom  S  -> 
( A `  0
)  e.  D )
1716ad2antrr 762 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  e.  D )
181, 2efger 18131 . . . . 5  |-  .~  Er  W
1918a1i 11 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  .~  Er  W
)
201, 2, 3, 4, 5, 6efgsrel 18147 . . . . 5  |-  ( A  e.  dom  S  -> 
( A `  0
)  .~  ( S `  A ) )
2120ad2antrr 762 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  .~  ( S `  A ) )
22 simpr 477 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( S `  A )  .~  ( S `  B )
)
2319, 21, 22ertrd 7758 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  .~  ( S `  B ) )
241, 2, 3, 4, 5, 6efgsdm 18143 . . . . 5  |-  ( B  e.  dom  S  <->  ( B  e.  (Word  W  \  { (/)
} )  /\  ( B `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  B ) ) ( B `  i )  e.  ran  ( T `
 ( B `  ( i  -  1 ) ) ) ) )
2524simp2bi 1077 . . . 4  |-  ( B  e.  dom  S  -> 
( B `  0
)  e.  D )
2625ad2antlr 763 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( B `  0 )  e.  D )
271, 2, 3, 4, 5, 6efgsrel 18147 . . . 4  |-  ( B  e.  dom  S  -> 
( B `  0
)  .~  ( S `  B ) )
2827ad2antlr 763 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( B `  0 )  .~  ( S `  B ) )
29 breq1 4656 . . . 4  |-  ( d  =  ( A ` 
0 )  ->  (
d  .~  ( S `  B )  <->  ( A `  0 )  .~  ( S `  B ) ) )
30 breq1 4656 . . . 4  |-  ( d  =  ( B ` 
0 )  ->  (
d  .~  ( S `  B )  <->  ( B `  0 )  .~  ( S `  B ) ) )
3129, 30rmoi 3530 . . 3  |-  ( ( E* d  e.  D  d  .~  ( S `  B )  /\  (
( A `  0
)  e.  D  /\  ( A `  0 )  .~  ( S `  B ) )  /\  ( ( B ` 
0 )  e.  D  /\  ( B `  0
)  .~  ( S `  B ) ) )  ->  ( A ` 
0 )  =  ( B `  0 ) )
3214, 17, 23, 26, 28, 31syl122anc 1335 . 2  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( S `
 A )  .~  ( S `  B ) )  ->  ( A `  0 )  =  ( B `  0
) )
3318a1i 11 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  .~  Er  W )
3420ad2antrr 762 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  .~  ( S `  A
) )
35 simpr 477 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  =  ( B ` 
0 ) )
3627ad2antlr 763 . . . 4  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( B `  0 )  .~  ( S `  B
) )
3735, 36eqbrtrd 4675 . . 3  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( A `  0 )  .~  ( S `  B
) )
3833, 34, 37ertr3d 7760 . 2  |-  ( ( ( A  e.  dom  S  /\  B  e.  dom  S )  /\  ( A `
 0 )  =  ( B `  0
) )  ->  ( S `  A )  .~  ( S `  B
) )
3932, 38impbida 877 1  |-  ( ( A  e.  dom  S  /\  B  e.  dom  S )  ->  ( ( S `  A )  .~  ( S `  B
)  <->  ( A ` 
0 )  =  ( B `  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   E*wrmo 2915   {crab 2916    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   0cc0 9936   1c1 9937    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-efg 18122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator