![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version Unicode version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
breqan12i.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqan12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | breqan12i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | breq12 4658 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 494 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 |
This theorem is referenced by: breqan12rd 4670 soisores 6577 isoid 6579 isores3 6585 isoini2 6589 ofrfval 6905 fnwelem 7292 fnse 7294 wemaplem1 8451 r0weon 8835 sornom 9099 enqbreq2 9742 nqereu 9751 ordpinq 9765 lterpq 9792 ltresr2 9962 axpre-ltadd 9988 leltadd 10512 lemul1a 10877 negiso 11003 xltneg 12048 lt2sq 12937 le2sq 12938 sqrtle 14001 prdsleval 16137 efgcpbllema 18167 iducn 22087 icopnfhmeo 22742 iccpnfhmeo 22744 xrhmeo 22745 reefiso 24202 sinord 24280 logltb 24346 logccv 24409 atanord 24654 birthdaylem3 24680 lgsquadlem3 25107 mddmd 29160 xrge0iifiso 29981 erdszelem4 31176 erdszelem8 31180 cgrextend 32115 matunitlindf 33407 idlaut 35382 monotuz 37506 monotoddzzfi 37507 expmordi 37512 wepwsolem 37612 fnwe2val 37619 aomclem8 37631 |
Copyright terms: Public domain | W3C validator |