HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvecval Structured version   Visualization version   Unicode version

Theorem eigvecval 28755
Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
eigvecval  |-  ( T : ~H --> ~H  ->  (
eigvec `  T )  =  { x  e.  ( ~H  \  0H )  |  E. y  e.  CC  ( T `  x )  =  ( y  .h  x ) } )
Distinct variable group:    x, y, T

Proof of Theorem eigvecval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 27856 . . . 4  |-  ~H  e.  _V
2 difexg 4808 . . . 4  |-  ( ~H  e.  _V  ->  ( ~H  \  0H )  e. 
_V )
31, 2ax-mp 5 . . 3  |-  ( ~H 
\  0H )  e. 
_V
43rabex 4813 . 2  |-  { x  e.  ( ~H  \  0H )  |  E. y  e.  CC  ( T `  x )  =  ( y  .h  x ) }  e.  _V
5 fveq1 6190 . . . . 5  |-  ( t  =  T  ->  (
t `  x )  =  ( T `  x ) )
65eqeq1d 2624 . . . 4  |-  ( t  =  T  ->  (
( t `  x
)  =  ( y  .h  x )  <->  ( T `  x )  =  ( y  .h  x ) ) )
76rexbidv 3052 . . 3  |-  ( t  =  T  ->  ( E. y  e.  CC  ( t `  x
)  =  ( y  .h  x )  <->  E. y  e.  CC  ( T `  x )  =  ( y  .h  x ) ) )
87rabbidv 3189 . 2  |-  ( t  =  T  ->  { x  e.  ( ~H  \  0H )  |  E. y  e.  CC  ( t `  x )  =  ( y  .h  x ) }  =  { x  e.  ( ~H  \  0H )  |  E. y  e.  CC  ( T `  x )  =  ( y  .h  x ) } )
9 df-eigvec 28712 . 2  |-  eigvec  =  ( t  e.  ( ~H 
^m  ~H )  |->  { x  e.  ( ~H  \  0H )  |  E. y  e.  CC  ( t `  x )  =  ( y  .h  x ) } )
104, 1, 1, 8, 9fvmptmap 7894 1  |-  ( T : ~H --> ~H  ->  (
eigvec `  T )  =  { x  e.  ( ~H  \  0H )  |  E. y  e.  CC  ( T `  x )  =  ( y  .h  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   ~Hchil 27776    .h csm 27778   0Hc0h 27792   eigveccei 27816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-eigvec 28712
This theorem is referenced by:  eleigvec  28816
  Copyright terms: Public domain W3C validator