MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf1di Structured version   Visualization version   Unicode version

Theorem elcncf1di 22698
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1  |-  ( ph  ->  F : A --> B )
elcncf1d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
elcncf1d.3  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
Assertion
Ref Expression
elcncf1di  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Distinct variable groups:    x, w, y, A    w, B, x, y    w, F, x, y    ph, w, x, y   
w, Z
Allowed substitution hints:    Z( x, y)

Proof of Theorem elcncf1di
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3  |-  ( ph  ->  F : A --> B )
2 elcncf1d.2 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
32imp 445 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  Z  e.  RR+ )
4 an32 839 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  <->  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) )
54anbi2i 730 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
6 anass 681 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
75, 6bitr4i 267 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  w  e.  A ) )
8 elcncf1d.3 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98imp 445 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
107, 9sylbir 225 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1110ralrimiva 2966 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
12 breq2 4657 . . . . . . . 8  |-  ( z  =  Z  ->  (
( abs `  (
x  -  w ) )  <  z  <->  ( abs `  ( x  -  w
) )  <  Z
) )
1312imbi1d 331 . . . . . . 7  |-  ( z  =  Z  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1413ralbidv 2986 . . . . . 6  |-  ( z  =  Z  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1514rspcev 3309 . . . . 5  |-  ( ( Z  e.  RR+  /\  A. w  e.  A  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
163, 11, 15syl2anc 693 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1716ralrimivva 2971 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
181, 17jca 554 . 2  |-  ( ph  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
19 elcncf 22692 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
2018, 19syl5ibrcom 237 1  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    < clt 10074    - cmin 10266   RR+crp 11832   abscabs 13974   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-cncf 22681
This theorem is referenced by:  elcncf1ii  22699
  Copyright terms: Public domain W3C validator