MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf Structured version   Visualization version   Unicode version

Theorem elcncf 22692
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
elcncf  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cncfval 22691 . . . 4  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21eleq2d 2687 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  F  e.  { f  e.  ( B  ^m  A )  | 
A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } ) )
3 fveq1 6190 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4 fveq1 6190 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  w )  =  ( F `  w ) )
53, 4oveq12d 6668 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  x
)  -  ( f `
 w ) )  =  ( ( F `
 x )  -  ( F `  w ) ) )
65fveq2d 6195 . . . . . . . 8  |-  ( f  =  F  ->  ( abs `  ( ( f `
 x )  -  ( f `  w
) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
76breq1d 4663 . . . . . . 7  |-  ( f  =  F  ->  (
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
87imbi2d 330 . . . . . 6  |-  ( f  =  F  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98rexralbidv 3058 . . . . 5  |-  ( f  =  F  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1092ralbidv 2989 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1110elrab 3363 . . 3  |-  ( F  e.  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
122, 11syl6bb 276 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
13 cnex 10017 . . . . 5  |-  CC  e.  _V
1413ssex 4802 . . . 4  |-  ( B 
C_  CC  ->  B  e. 
_V )
1513ssex 4802 . . . 4  |-  ( A 
C_  CC  ->  A  e. 
_V )
16 elmapg 7870 . . . 4  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( F  e.  ( B  ^m  A )  <-> 
F : A --> B ) )
1714, 15, 16syl2anr 495 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( B  ^m  A )  <->  F : A
--> B ) )
1817anbi1d 741 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F  e.  ( B  ^m  A )  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1912, 18bitrd 268 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934    < clt 10074    - cmin 10266   RR+crp 11832   abscabs 13974   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-cncf 22681
This theorem is referenced by:  elcncf2  22693  cncff  22696  elcncf1di  22698  rescncf  22700  cncfmet  22711  cncfshift  40087  cncfperiod  40092
  Copyright terms: Public domain W3C validator