MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcntzsn Structured version   Visualization version   Unicode version

Theorem elcntzsn 17758
Description: Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzfval.b  |-  B  =  ( Base `  M
)
cntzfval.p  |-  .+  =  ( +g  `  M )
cntzfval.z  |-  Z  =  (Cntz `  M )
Assertion
Ref Expression
elcntzsn  |-  ( Y  e.  B  ->  ( X  e.  ( Z `  { Y } )  <-> 
( X  e.  B  /\  ( X  .+  Y
)  =  ( Y 
.+  X ) ) ) )

Proof of Theorem elcntzsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . 4  |-  B  =  ( Base `  M
)
2 cntzfval.p . . . 4  |-  .+  =  ( +g  `  M )
3 cntzfval.z . . . 4  |-  Z  =  (Cntz `  M )
41, 2, 3cntzsnval 17757 . . 3  |-  ( Y  e.  B  ->  ( Z `  { Y } )  =  {
x  e.  B  | 
( x  .+  Y
)  =  ( Y 
.+  x ) } )
54eleq2d 2687 . 2  |-  ( Y  e.  B  ->  ( X  e.  ( Z `  { Y } )  <-> 
X  e.  { x  e.  B  |  (
x  .+  Y )  =  ( Y  .+  x ) } ) )
6 oveq1 6657 . . . 4  |-  ( x  =  X  ->  (
x  .+  Y )  =  ( X  .+  Y ) )
7 oveq2 6658 . . . 4  |-  ( x  =  X  ->  ( Y  .+  x )  =  ( Y  .+  X
) )
86, 7eqeq12d 2637 . . 3  |-  ( x  =  X  ->  (
( x  .+  Y
)  =  ( Y 
.+  x )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
98elrab 3363 . 2  |-  ( X  e.  { x  e.  B  |  ( x 
.+  Y )  =  ( Y  .+  x
) }  <->  ( X  e.  B  /\  ( X  .+  Y )  =  ( Y  .+  X
) ) )
105, 9syl6bb 276 1  |-  ( Y  e.  B  ->  ( X  e.  ( Z `  { Y } )  <-> 
( X  e.  B  /\  ( X  .+  Y
)  =  ( Y 
.+  X ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-cntz 17750
This theorem is referenced by:  gsumconst  18334  gsumpt  18361
  Copyright terms: Public domain W3C validator