MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpt Structured version   Visualization version   Unicode version

Theorem gsumpt 18361
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumpt.b  |-  B  =  ( Base `  G
)
gsumpt.z  |-  .0.  =  ( 0g `  G )
gsumpt.g  |-  ( ph  ->  G  e.  Mnd )
gsumpt.a  |-  ( ph  ->  A  e.  V )
gsumpt.x  |-  ( ph  ->  X  e.  A )
gsumpt.f  |-  ( ph  ->  F : A --> B )
gsumpt.s  |-  ( ph  ->  ( F supp  .0.  )  C_ 
{ X } )
Assertion
Ref Expression
gsumpt  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )

Proof of Theorem gsumpt
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 gsumpt.f . . . 4  |-  ( ph  ->  F : A --> B )
2 gsumpt.x . . . . 5  |-  ( ph  ->  X  e.  A )
32snssd 4340 . . . 4  |-  ( ph  ->  { X }  C_  A )
41, 3feqresmpt 6250 . . 3  |-  ( ph  ->  ( F  |`  { X } )  =  ( a  e.  { X }  |->  ( F `  a ) ) )
54oveq2d 6666 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) ) )
6 gsumpt.b . . 3  |-  B  =  ( Base `  G
)
7 gsumpt.z . . 3  |-  .0.  =  ( 0g `  G )
8 eqid 2622 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
9 gsumpt.g . . 3  |-  ( ph  ->  G  e.  Mnd )
10 gsumpt.a . . 3  |-  ( ph  ->  A  e.  V )
111, 2ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( F `  X
)  e.  B )
12 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) )
13 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
146, 13, 8elcntzsn 17758 . . . . . . . . 9  |-  ( ( F `  X )  e.  B  ->  (
( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } )  <->  ( ( F `  X )  e.  B  /\  (
( F `  X
) ( +g  `  G
) ( F `  X ) )  =  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) ) ) ) )
1511, 14syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X )  e.  ( (Cntz `  G ) `  { ( F `  X ) } )  <-> 
( ( F `  X )  e.  B  /\  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) ) ) )
1611, 12, 15mpbir2and 957 . . . . . . 7  |-  ( ph  ->  ( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } ) )
1716snssd 4340 . . . . . 6  |-  ( ph  ->  { ( F `  X ) }  C_  ( (Cntz `  G ) `  { ( F `  X ) } ) )
18 eqid 2622 . . . . . . 7  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
19 eqid 2622 . . . . . . 7  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
208, 18, 19cntzspan 18247 . . . . . 6  |-  ( ( G  e.  Mnd  /\  { ( F `  X
) }  C_  (
(Cntz `  G ) `  { ( F `  X ) } ) )  ->  ( Gs  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  e. CMnd )
219, 17, 20syl2anc 693 . . . . 5  |-  ( ph  ->  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )  e. CMnd )
226submacs 17365 . . . . . . . 8  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
23 acsmre 16313 . . . . . . . 8  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
249, 22, 233syl 18 . . . . . . 7  |-  ( ph  ->  (SubMnd `  G )  e.  (Moore `  B )
)
2511snssd 4340 . . . . . . 7  |-  ( ph  ->  { ( F `  X ) }  C_  B )
2618mrccl 16271 . . . . . . 7  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  { ( F `  X ) }  C_  B )  ->  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )
)
2724, 25, 26syl2anc 693 . . . . . 6  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } )  e.  (SubMnd `  G
) )
2819, 8submcmn2 18244 . . . . . 6  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
2927, 28syl 17 . . . . 5  |-  ( ph  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
3021, 29mpbid 222 . . . 4  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
31 ffn 6045 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
321, 31syl 17 . . . . . 6  |-  ( ph  ->  F  Fn  A )
33 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  a  =  X )
3433fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  =  ( F `  X ) )
3524, 18, 25mrcssidd 16285 . . . . . . . . . . 11  |-  ( ph  ->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
36 fvex 6201 . . . . . . . . . . . 12  |-  ( F `
 X )  e. 
_V
3736snss 4316 . . . . . . . . . . 11  |-  ( ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } )  <->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
3835, 37sylibr 224 . . . . . . . . . 10  |-  ( ph  ->  ( F `  X
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
3938ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
4034, 39eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
41 eldifsn 4317 . . . . . . . . . . 11  |-  ( a  e.  ( A  \  { X } )  <->  ( a  e.  A  /\  a  =/=  X ) )
42 gsumpt.s . . . . . . . . . . . 12  |-  ( ph  ->  ( F supp  .0.  )  C_ 
{ X } )
43 fvex 6201 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  e. 
_V
447, 43eqeltri 2697 . . . . . . . . . . . . 13  |-  .0.  e.  _V
4544a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  .0.  e.  _V )
461, 42, 10, 45suppssr 7326 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A  \  { X } ) )  -> 
( F `  a
)  =  .0.  )
4741, 46sylan2br 493 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  =  .0.  )
487subm0cl 17352 . . . . . . . . . . . 12  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4927, 48syl 17 . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
5049adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
5147, 50eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
5251anassrs 680 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =/=  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5340, 52pm2.61dane 2881 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5453ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
55 ffnfv 6388 . . . . . 6  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  <->  ( F  Fn  A  /\  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
5632, 54, 55sylanbrc 698 . . . . 5  |-  ( ph  ->  F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
57 frn 6053 . . . . 5  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  ->  ran  F 
C_  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
5856, 57syl 17 . . . 4  |-  ( ph  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
598cntzidss 17770 . . . 4  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  /\  ran  F  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
6030, 58, 59syl2anc 693 . . 3  |-  ( ph  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
61 ffun 6048 . . . . 5  |-  ( F : A --> B  ->  Fun  F )
621, 61syl 17 . . . 4  |-  ( ph  ->  Fun  F )
63 snfi 8038 . . . . 5  |-  { X }  e.  Fin
64 ssfi 8180 . . . . 5  |-  ( ( { X }  e.  Fin  /\  ( F supp  .0.  )  C_  { X }
)  ->  ( F supp  .0.  )  e.  Fin )
6563, 42, 64sylancr 695 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
66 fex 6490 . . . . . 6  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
671, 10, 66syl2anc 693 . . . . 5  |-  ( ph  ->  F  e.  _V )
68 isfsupp 8279 . . . . 5  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F finSupp  .0.  <->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin )
) )
6967, 45, 68syl2anc 693 . . . 4  |-  ( ph  ->  ( F finSupp  .0.  <->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin )
) )
7062, 65, 69mpbir2and 957 . . 3  |-  ( ph  ->  F finSupp  .0.  )
716, 7, 8, 9, 10, 1, 60, 42, 70gsumzres 18310 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  F ) )
72 fveq2 6191 . . . 4  |-  ( a  =  X  ->  ( F `  a )  =  ( F `  X ) )
736, 72gsumsn 18354 . . 3  |-  ( ( G  e.  Mnd  /\  X  e.  A  /\  ( F `  X )  e.  B )  -> 
( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
749, 2, 11, 73syl3anc 1326 . 2  |-  ( ph  ->  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
755, 71, 743eqtr3d 2664 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Mndcmnd 17294  SubMndcsubmnd 17334  Cntzccntz 17748  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  gsummpt1n0  18364  dprdfid  18416  evlslem3  19514  evlslem1  19515  coe1tmmul2  19646  coe1tmmul  19647  uvcresum  20132  frlmup2  20138  mamulid  20247  mamurid  20248  coe1mul3  23859  tayl0  24116  jensen  24715  linc1  42214
  Copyright terms: Public domain W3C validator