Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhoi Structured version   Visualization version   Unicode version

Theorem elhoi 40756
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
elhoi.1  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
elhoi  |-  ( ph  ->  ( Y  e.  ( ( A [,) B
)  ^m  X )  <->  ( Y : X --> RR*  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B
) ) ) )
Distinct variable groups:    x, A    x, B    x, X    x, Y
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem elhoi
StepHypRef Expression
1 ovexd 6680 . . 3  |-  ( ph  ->  ( A [,) B
)  e.  _V )
2 elhoi.1 . . 3  |-  ( ph  ->  X  e.  V )
3 elmapg 7870 . . 3  |-  ( ( ( A [,) B
)  e.  _V  /\  X  e.  V )  ->  ( Y  e.  ( ( A [,) B
)  ^m  X )  <->  Y : X --> ( A [,) B ) ) )
41, 2, 3syl2anc 693 . 2  |-  ( ph  ->  ( Y  e.  ( ( A [,) B
)  ^m  X )  <->  Y : X --> ( A [,) B ) ) )
5 id 22 . . . . . 6  |-  ( Y : X --> ( A [,) B )  ->  Y : X --> ( A [,) B ) )
6 icossxr 12258 . . . . . . 7  |-  ( A [,) B )  C_  RR*
76a1i 11 . . . . . 6  |-  ( Y : X --> ( A [,) B )  -> 
( A [,) B
)  C_  RR* )
85, 7fssd 6057 . . . . 5  |-  ( Y : X --> ( A [,) B )  ->  Y : X --> RR* )
9 ffvelrn 6357 . . . . . 6  |-  ( ( Y : X --> ( A [,) B )  /\  x  e.  X )  ->  ( Y `  x
)  e.  ( A [,) B ) )
109ralrimiva 2966 . . . . 5  |-  ( Y : X --> ( A [,) B )  ->  A. x  e.  X  ( Y `  x )  e.  ( A [,) B ) )
118, 10jca 554 . . . 4  |-  ( Y : X --> ( A [,) B )  -> 
( Y : X --> RR* 
/\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B ) ) )
12 ffn 6045 . . . . . . 7  |-  ( Y : X --> RR*  ->  Y  Fn  X )
1312adantr 481 . . . . . 6  |-  ( ( Y : X --> RR*  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B
) )  ->  Y  Fn  X )
14 simpr 477 . . . . . 6  |-  ( ( Y : X --> RR*  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B
) )  ->  A. x  e.  X  ( Y `  x )  e.  ( A [,) B ) )
1513, 14jca 554 . . . . 5  |-  ( ( Y : X --> RR*  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B
) )  ->  ( Y  Fn  X  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B ) ) )
16 ffnfv 6388 . . . . 5  |-  ( Y : X --> ( A [,) B )  <->  ( Y  Fn  X  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B ) ) )
1715, 16sylibr 224 . . . 4  |-  ( ( Y : X --> RR*  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B
) )  ->  Y : X --> ( A [,) B ) )
1811, 17impbii 199 . . 3  |-  ( Y : X --> ( A [,) B )  <->  ( Y : X --> RR*  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B ) ) )
1918a1i 11 . 2  |-  ( ph  ->  ( Y : X --> ( A [,) B )  <-> 
( Y : X --> RR* 
/\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B ) ) ) )
204, 19bitrd 268 1  |-  ( ph  ->  ( Y  e.  ( ( A [,) B
)  ^m  X )  <->  ( Y : X --> RR*  /\  A. x  e.  X  ( Y `  x )  e.  ( A [,) B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RR*cxr 10073   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-xr 10078  df-ico 12181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator