| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnmax | Structured version Visualization version Unicode version | ||
| Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prnmax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . 5
| |
| 2 | 1 | anbi2d 740 |
. . . 4
|
| 3 | breq1 4656 |
. . . . 5
| |
| 4 | 3 | rexbidv 3052 |
. . . 4
|
| 5 | 2, 4 | imbi12d 334 |
. . 3
|
| 6 | elnpi 9810 |
. . . . . 6
| |
| 7 | 6 | simprbi 480 |
. . . . 5
|
| 8 | 7 | r19.21bi 2932 |
. . . 4
|
| 9 | 8 | simprd 479 |
. . 3
|
| 10 | 5, 9 | vtoclg 3266 |
. 2
|
| 11 | 10 | anabsi7 860 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-np 9803 |
| This theorem is referenced by: npomex 9818 prnmadd 9819 genpnmax 9829 1idpr 9851 ltexprlem4 9861 reclem3pr 9871 suplem1pr 9874 |
| Copyright terms: Public domain | W3C validator |