| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prcdnq | Structured version Visualization version Unicode version | ||
| Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prcdnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 9748 |
. . . . . . 7
| |
| 2 | relxp 5227 |
. . . . . . 7
| |
| 3 | relss 5206 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | mp2 9 |
. . . . . 6
|
| 5 | 4 | brrelexi 5158 |
. . . . 5
|
| 6 | eleq1 2689 |
. . . . . . . . 9
| |
| 7 | 6 | anbi2d 740 |
. . . . . . . 8
|
| 8 | breq2 4657 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12d 747 |
. . . . . . 7
|
| 10 | 9 | imbi1d 331 |
. . . . . 6
|
| 11 | breq1 4656 |
. . . . . . . 8
| |
| 12 | 11 | anbi2d 740 |
. . . . . . 7
|
| 13 | eleq1 2689 |
. . . . . . 7
| |
| 14 | 12, 13 | imbi12d 334 |
. . . . . 6
|
| 15 | elnpi 9810 |
. . . . . . . . . . 11
| |
| 16 | 15 | simprbi 480 |
. . . . . . . . . 10
|
| 17 | 16 | r19.21bi 2932 |
. . . . . . . . 9
|
| 18 | 17 | simpld 475 |
. . . . . . . 8
|
| 19 | 18 | 19.21bi 2059 |
. . . . . . 7
|
| 20 | 19 | imp 445 |
. . . . . 6
|
| 21 | 10, 14, 20 | vtocl2g 3270 |
. . . . 5
|
| 22 | 5, 21 | sylan2 491 |
. . . 4
|
| 23 | 22 | adantll 750 |
. . 3
|
| 24 | 23 | pm2.43i 52 |
. 2
|
| 25 | 24 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-ltnq 9740 df-np 9803 |
| This theorem is referenced by: prub 9816 addclprlem1 9838 mulclprlem 9841 distrlem4pr 9848 1idpr 9851 psslinpr 9853 prlem934 9855 ltaddpr 9856 ltexprlem2 9859 ltexprlem3 9860 ltexprlem6 9863 prlem936 9869 reclem2pr 9870 suplem1pr 9874 |
| Copyright terms: Public domain | W3C validator |