| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eloprabga | Structured version Visualization version Unicode version | ||
| Description: The law of concretion for operation class abstraction. Compare elopab 4983. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| eloprabga.1 |
|
| Ref | Expression |
|---|---|
| eloprabga |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | elex 3212 |
. 2
| |
| 3 | elex 3212 |
. 2
| |
| 4 | opex 4932 |
. . 3
| |
| 5 | simpr 477 |
. . . . . . . . . 10
| |
| 6 | 5 | eqeq1d 2624 |
. . . . . . . . 9
|
| 7 | eqcom 2629 |
. . . . . . . . . 10
| |
| 8 | vex 3203 |
. . . . . . . . . . 11
| |
| 9 | vex 3203 |
. . . . . . . . . . 11
| |
| 10 | vex 3203 |
. . . . . . . . . . 11
| |
| 11 | 8, 9, 10 | otth2 4952 |
. . . . . . . . . 10
|
| 12 | 7, 11 | bitri 264 |
. . . . . . . . 9
|
| 13 | 6, 12 | syl6bb 276 |
. . . . . . . 8
|
| 14 | 13 | anbi1d 741 |
. . . . . . 7
|
| 15 | eloprabga.1 |
. . . . . . . 8
| |
| 16 | 15 | pm5.32i 669 |
. . . . . . 7
|
| 17 | 14, 16 | syl6bb 276 |
. . . . . 6
|
| 18 | 17 | 3exbidv 1853 |
. . . . 5
|
| 19 | df-oprab 6654 |
. . . . . . . . 9
| |
| 20 | 19 | eleq2i 2693 |
. . . . . . . 8
|
| 21 | abid 2610 |
. . . . . . . 8
| |
| 22 | 20, 21 | bitr2i 265 |
. . . . . . 7
|
| 23 | eleq1 2689 |
. . . . . . 7
| |
| 24 | 22, 23 | syl5bb 272 |
. . . . . 6
|
| 25 | 24 | adantl 482 |
. . . . 5
|
| 26 | elisset 3215 |
. . . . . . . . . 10
| |
| 27 | elisset 3215 |
. . . . . . . . . 10
| |
| 28 | elisset 3215 |
. . . . . . . . . 10
| |
| 29 | 26, 27, 28 | 3anim123i 1247 |
. . . . . . . . 9
|
| 30 | eeeanv 2183 |
. . . . . . . . 9
| |
| 31 | 29, 30 | sylibr 224 |
. . . . . . . 8
|
| 32 | 31 | biantrurd 529 |
. . . . . . 7
|
| 33 | 19.41vvv 1916 |
. . . . . . 7
| |
| 34 | 32, 33 | syl6rbbr 279 |
. . . . . 6
|
| 35 | 34 | adantr 481 |
. . . . 5
|
| 36 | 18, 25, 35 | 3bitr3d 298 |
. . . 4
|
| 37 | 36 | expcom 451 |
. . 3
|
| 38 | 4, 37 | vtocle 3282 |
. 2
|
| 39 | 1, 2, 3, 38 | syl3an 1368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-oprab 6654 |
| This theorem is referenced by: eloprabg 6748 ovigg 6781 vdwpc 15684 elmpps 31470 uncov 33390 |
| Copyright terms: Public domain | W3C validator |