Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpps Structured version   Visualization version   Unicode version

Theorem elmpps 31470
Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p  |-  P  =  (mPreSt `  T )
mppsval.j  |-  J  =  (mPPSt `  T )
mppsval.c  |-  C  =  (mCls `  T )
Assertion
Ref Expression
elmpps  |-  ( <. D ,  H ,  A >.  e.  J  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) )

Proof of Theorem elmpps
Dummy variables  a 
d  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ot 4186 . . 3  |-  <. D ,  H ,  A >.  = 
<. <. D ,  H >. ,  A >.
2 mppsval.p . . . 4  |-  P  =  (mPreSt `  T )
3 mppsval.j . . . 4  |-  J  =  (mPPSt `  T )
4 mppsval.c . . . 4  |-  C  =  (mCls `  T )
52, 3, 4mppsval 31469 . . 3  |-  J  =  { <. <. d ,  h >. ,  a >.  |  (
<. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }
61, 5eleq12i 2694 . 2  |-  ( <. D ,  H ,  A >.  e.  J  <->  <. <. D ,  H >. ,  A >.  e. 
{ <. <. d ,  h >. ,  a >.  |  (
<. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) } )
7 oprabss 6746 . . . 4  |-  { <. <.
d ,  h >. ,  a >.  |  ( <. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }  C_  (
( _V  X.  _V )  X.  _V )
87sseli 3599 . . 3  |-  ( <. <. D ,  H >. ,  A >.  e.  { <. <.
d ,  h >. ,  a >.  |  ( <. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }  ->  <. <. D ,  H >. ,  A >.  e.  ( ( _V  X.  _V )  X.  _V )
)
92mpstssv 31436 . . . . . 6  |-  P  C_  ( ( _V  X.  _V )  X.  _V )
109sseli 3599 . . . . 5  |-  ( <. D ,  H ,  A >.  e.  P  ->  <. D ,  H ,  A >.  e.  ( ( _V  X.  _V )  X.  _V ) )
111, 10syl5eqelr 2706 . . . 4  |-  ( <. D ,  H ,  A >.  e.  P  ->  <. <. D ,  H >. ,  A >.  e.  ( ( _V  X.  _V )  X.  _V ) )
1211adantr 481 . . 3  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) )  ->  <. <. D ,  H >. ,  A >.  e.  ( ( _V  X.  _V )  X.  _V ) )
13 opelxp 5146 . . . 4  |-  ( <. <. D ,  H >. ,  A >.  e.  (
( _V  X.  _V )  X.  _V )  <->  ( <. D ,  H >.  e.  ( _V  X.  _V )  /\  A  e.  _V ) )
14 opelxp 5146 . . . . 5  |-  ( <. D ,  H >.  e.  ( _V  X.  _V ) 
<->  ( D  e.  _V  /\  H  e.  _V )
)
15 simp1 1061 . . . . . . . . . 10  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  ->  d  =  D )
16 simp2 1062 . . . . . . . . . 10  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  ->  h  =  H )
17 simp3 1063 . . . . . . . . . 10  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  ->  a  =  A )
1815, 16, 17oteq123d 4417 . . . . . . . . 9  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  -> 
<. d ,  h ,  a >.  =  <. D ,  H ,  A >. )
1918eleq1d 2686 . . . . . . . 8  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  ->  ( <. d ,  h ,  a >.  e.  P  <->  <. D ,  H ,  A >.  e.  P ) )
2015, 16oveq12d 6668 . . . . . . . . 9  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  ->  ( d C h )  =  ( D C H ) )
2117, 20eleq12d 2695 . . . . . . . 8  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  ->  ( a  e.  ( d C h )  <-> 
A  e.  ( D C H ) ) )
2219, 21anbi12d 747 . . . . . . 7  |-  ( ( d  =  D  /\  h  =  H  /\  a  =  A )  ->  ( ( <. d ,  h ,  a >.  e.  P  /\  a  e.  ( d C h ) )  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) ) )
2322eloprabga 6747 . . . . . 6  |-  ( ( D  e.  _V  /\  H  e.  _V  /\  A  e.  _V )  ->  ( <. <. D ,  H >. ,  A >.  e.  { <. <. d ,  h >. ,  a >.  |  (
<. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) ) )
24233expa 1265 . . . . 5  |-  ( ( ( D  e.  _V  /\  H  e.  _V )  /\  A  e.  _V )  ->  ( <. <. D ,  H >. ,  A >.  e. 
{ <. <. d ,  h >. ,  a >.  |  (
<. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) ) )
2514, 24sylanb 489 . . . 4  |-  ( (
<. D ,  H >.  e.  ( _V  X.  _V )  /\  A  e.  _V )  ->  ( <. <. D ,  H >. ,  A >.  e. 
{ <. <. d ,  h >. ,  a >.  |  (
<. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) ) )
2613, 25sylbi 207 . . 3  |-  ( <. <. D ,  H >. ,  A >.  e.  (
( _V  X.  _V )  X.  _V )  -> 
( <. <. D ,  H >. ,  A >.  e.  { <. <. d ,  h >. ,  a >.  |  (
<. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) ) )
278, 12, 26pm5.21nii 368 . 2  |-  ( <. <. D ,  H >. ,  A >.  e.  { <. <.
d ,  h >. ,  a >.  |  ( <. d ,  h ,  a >.  e.  P  /\  a  e.  (
d C h ) ) }  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) )
286, 27bitri 264 1  |-  ( <. D ,  H ,  A >.  e.  J  <->  ( <. D ,  H ,  A >.  e.  P  /\  A  e.  ( D C H ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   <.cotp 4185    X. cxp 5112   ` cfv 5888  (class class class)co 6650   {coprab 6651  mPreStcmpst 31370  mClscmcls 31374  mPPStcmpps 31375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpst 31390  df-mpps 31395
This theorem is referenced by:  mthmpps  31479  mclspps  31481
  Copyright terms: Public domain W3C validator