Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uncov Structured version   Visualization version   Unicode version

Theorem uncov 33390
Description: Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
uncov  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Auncurry  F B )  =  ( ( F `  A ) `
 B ) )

Proof of Theorem uncov
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . . . . 5  |-  ( <. A ,  B >.uncurry  F w 
<-> 
<. <. A ,  B >. ,  w >.  e. uncurry  F )
2 df-unc 7394 . . . . . 6  |- uncurry  F  =  { <. <. x ,  y
>. ,  z >.  |  y ( F `  x ) z }
32eleq2i 2693 . . . . 5  |-  ( <. <. A ,  B >. ,  w >.  e. uncurry  F  <->  <. <. A ,  B >. ,  w >.  e. 
{ <. <. x ,  y
>. ,  z >.  |  y ( F `  x ) z } )
41, 3bitri 264 . . . 4  |-  ( <. A ,  B >.uncurry  F w 
<-> 
<. <. A ,  B >. ,  w >.  e.  { <. <. x ,  y
>. ,  z >.  |  y ( F `  x ) z } )
5 vex 3203 . . . . 5  |-  w  e. 
_V
6 simp2 1062 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  w )  ->  y  =  B )
7 fveq2 6191 . . . . . . . 8  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
873ad2ant1 1082 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  w )  ->  ( F `  x
)  =  ( F `
 A ) )
9 simp3 1063 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  w )  ->  z  =  w )
106, 8, 9breq123d 4667 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  w )  ->  ( y ( F `
 x ) z  <-> 
B ( F `  A ) w ) )
1110eloprabga 6747 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  w  e.  _V )  ->  ( <. <. A ,  B >. ,  w >.  e.  { <. <. x ,  y
>. ,  z >.  |  y ( F `  x ) z }  <-> 
B ( F `  A ) w ) )
125, 11mp3an3 1413 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. <. A ,  B >. ,  w >.  e.  { <. <. x ,  y
>. ,  z >.  |  y ( F `  x ) z }  <-> 
B ( F `  A ) w ) )
134, 12syl5bb 272 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.uncurry 
F w  <->  B ( F `  A )
w ) )
1413iotabidv 5872 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( iota w <. A ,  B >.uncurry  F w )  =  ( iota
w B ( F `
 A ) w ) )
15 df-ov 6653 . . 3  |-  ( Auncurry  F B )  =  (uncurry  F `  <. A ,  B >. )
16 df-fv 5896 . . 3  |-  (uncurry  F `  <. A ,  B >. )  =  ( iota
w <. A ,  B >.uncurry 
F w )
1715, 16eqtri 2644 . 2  |-  ( Auncurry  F B )  =  ( iota w <. A ,  B >.uncurry  F w )
18 df-fv 5896 . 2  |-  ( ( F `  A ) `
 B )  =  ( iota w B ( F `  A
) w )
1914, 17, 183eqtr4g 2681 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Auncurry  F B )  =  ( ( F `  A ) `
 B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653   iotacio 5849   ` cfv 5888  (class class class)co 6650   {coprab 6651  uncurry cunc 7392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-unc 7394
This theorem is referenced by:  curunc  33391  matunitlindflem2  33406
  Copyright terms: Public domain W3C validator