MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssres Structured version   Visualization version   Unicode version

Theorem xpssres 5434
Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres  |-  ( C 
C_  A  ->  (
( A  X.  B
)  |`  C )  =  ( C  X.  B
) )

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 5126 . . 3  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
2 inxp 5254 . . 3  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
3 inv1 3970 . . . 4  |-  ( B  i^i  _V )  =  B
43xpeq2i 5136 . . 3  |-  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  ( ( A  i^i  C
)  X.  B )
51, 2, 43eqtri 2648 . 2  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  i^i  C
)  X.  B )
6 sseqin2 3817 . . . 4  |-  ( C 
C_  A  <->  ( A  i^i  C )  =  C )
76biimpi 206 . . 3  |-  ( C 
C_  A  ->  ( A  i^i  C )  =  C )
87xpeq1d 5138 . 2  |-  ( C 
C_  A  ->  (
( A  i^i  C
)  X.  B )  =  ( C  X.  B ) )
95, 8syl5eq 2668 1  |-  ( C 
C_  A  ->  (
( A  X.  B
)  |`  C )  =  ( C  X.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   _Vcvv 3200    i^i cin 3573    C_ wss 3574    X. cxp 5112    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-res 5126
This theorem is referenced by:  fparlem3  7279  fparlem4  7280  fpwwe2lem13  9464  pwssplit3  19061  cnconst2  21087  xkoccn  21422  tmdgsum  21899  dvcmul  23707  dvcmulf  23708  dvsconst  38529  dvsid  38530  aacllem  42547
  Copyright terms: Public domain W3C validator