| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpt2res | Structured version Visualization version Unicode version | ||
| Description: Membership in the range of a restricted operation class abstraction. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| rngop.1 |
|
| Ref | Expression |
|---|---|
| elrnmpt2res |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2626 |
. . . . . 6
| |
| 2 | 1 | anbi1d 741 |
. . . . 5
|
| 3 | 2 | anbi2d 740 |
. . . 4
|
| 4 | 3 | 2exbidv 1852 |
. . 3
|
| 5 | an12 838 |
. . . . . . . . . 10
| |
| 6 | an12 838 |
. . . . . . . . . . . 12
| |
| 7 | ancom 466 |
. . . . . . . . . . . . . 14
| |
| 8 | eleq1 2689 |
. . . . . . . . . . . . . . . 16
| |
| 9 | df-br 4654 |
. . . . . . . . . . . . . . . 16
| |
| 10 | 8, 9 | syl6bbr 278 |
. . . . . . . . . . . . . . 15
|
| 11 | 10 | anbi2d 740 |
. . . . . . . . . . . . . 14
|
| 12 | 7, 11 | syl5bbr 274 |
. . . . . . . . . . . . 13
|
| 13 | 12 | anbi2d 740 |
. . . . . . . . . . . 12
|
| 14 | 6, 13 | syl5bb 272 |
. . . . . . . . . . 11
|
| 15 | 14 | pm5.32i 669 |
. . . . . . . . . 10
|
| 16 | 5, 15 | bitri 264 |
. . . . . . . . 9
|
| 17 | 16 | 2exbii 1775 |
. . . . . . . 8
|
| 18 | 19.42vv 1920 |
. . . . . . . 8
| |
| 19 | 17, 18 | bitr3i 266 |
. . . . . . 7
|
| 20 | 19 | opabbii 4717 |
. . . . . 6
|
| 21 | dfoprab2 6701 |
. . . . . 6
| |
| 22 | rngop.1 |
. . . . . . . . 9
| |
| 23 | df-mpt2 6655 |
. . . . . . . . 9
| |
| 24 | dfoprab2 6701 |
. . . . . . . . 9
| |
| 25 | 22, 23, 24 | 3eqtri 2648 |
. . . . . . . 8
|
| 26 | 25 | reseq1i 5392 |
. . . . . . 7
|
| 27 | resopab 5446 |
. . . . . . 7
| |
| 28 | 26, 27 | eqtri 2644 |
. . . . . 6
|
| 29 | 20, 21, 28 | 3eqtr4ri 2655 |
. . . . 5
|
| 30 | 29 | rneqi 5352 |
. . . 4
|
| 31 | rnoprab 6743 |
. . . 4
| |
| 32 | 30, 31 | eqtri 2644 |
. . 3
|
| 33 | 4, 32 | elab2g 3353 |
. 2
|
| 34 | r2ex 3061 |
. 2
| |
| 35 | 33, 34 | syl6bbr 278 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |