Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsx Structured version   Visualization version   Unicode version

Theorem elsx 30257
Description: The cartesian product of two open sets is an element of the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Assertion
Ref Expression
elsx  |-  ( ( ( S  e.  V  /\  T  e.  W
)  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( A  X.  B
)  e.  ( S ×s  T ) )

Proof of Theorem elsx
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) )  =  ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) )
21txbasex 21369 . . . . 5  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) )  e. 
_V )
3 sssigagen 30208 . . . . 5  |-  ( ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) )  e.  _V  ->  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) )  C_  (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) ) )
42, 3syl 17 . . . 4  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) )  C_  (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) ) )
54adantr 481 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  W
)  /\  ( A  e.  S  /\  B  e.  T ) )  ->  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) )  C_  (sigaGen ` 
ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) ) )
6 eqid 2622 . . . . . 6  |-  ( A  X.  B )  =  ( A  X.  B
)
7 xpeq1 5128 . . . . . . . 8  |-  ( x  =  A  ->  (
x  X.  y )  =  ( A  X.  y ) )
87eqeq2d 2632 . . . . . . 7  |-  ( x  =  A  ->  (
( A  X.  B
)  =  ( x  X.  y )  <->  ( A  X.  B )  =  ( A  X.  y ) ) )
9 xpeq2 5129 . . . . . . . 8  |-  ( y  =  B  ->  ( A  X.  y )  =  ( A  X.  B
) )
109eqeq2d 2632 . . . . . . 7  |-  ( y  =  B  ->  (
( A  X.  B
)  =  ( A  X.  y )  <->  ( A  X.  B )  =  ( A  X.  B ) ) )
118, 10rspc2ev 3324 . . . . . 6  |-  ( ( A  e.  S  /\  B  e.  T  /\  ( A  X.  B
)  =  ( A  X.  B ) )  ->  E. x  e.  S  E. y  e.  T  ( A  X.  B
)  =  ( x  X.  y ) )
126, 11mp3an3 1413 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  T )  ->  E. x  e.  S  E. y  e.  T  ( A  X.  B
)  =  ( x  X.  y ) )
13 xpexg 6960 . . . . . 6  |-  ( ( A  e.  S  /\  B  e.  T )  ->  ( A  X.  B
)  e.  _V )
14 eqid 2622 . . . . . . 7  |-  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) )  =  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) )
1514elrnmpt2g 6772 . . . . . 6  |-  ( ( A  X.  B )  e.  _V  ->  (
( A  X.  B
)  e.  ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) )  <->  E. x  e.  S  E. y  e.  T  ( A  X.  B
)  =  ( x  X.  y ) ) )
1613, 15syl 17 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  T )  ->  ( ( A  X.  B )  e.  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) )  <->  E. x  e.  S  E. y  e.  T  ( A  X.  B )  =  ( x  X.  y ) ) )
1712, 16mpbird 247 . . . 4  |-  ( ( A  e.  S  /\  B  e.  T )  ->  ( A  X.  B
)  e.  ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) ) )
1817adantl 482 . . 3  |-  ( ( ( S  e.  V  /\  T  e.  W
)  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( A  X.  B
)  e.  ran  (
x  e.  S , 
y  e.  T  |->  ( x  X.  y ) ) )
195, 18sseldd 3604 . 2  |-  ( ( ( S  e.  V  /\  T  e.  W
)  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( A  X.  B
)  e.  (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y
) ) ) )
201sxval 30253 . . 3  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S ×s  T )  =  (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) ) )
2120adantr 481 . 2  |-  ( ( ( S  e.  V  /\  T  e.  W
)  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( S ×s  T )  =  (sigaGen `  ran  ( x  e.  S ,  y  e.  T  |->  ( x  X.  y ) ) ) )
2219, 21eleqtrrd 2704 1  |-  ( ( ( S  e.  V  /\  T  e.  W
)  /\  ( A  e.  S  /\  B  e.  T ) )  -> 
( A  X.  B
)  e.  ( S ×s  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574    X. cxp 5112   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  sigaGencsigagen 30201   ×s csx 30251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-siga 30171  df-sigagen 30202  df-sx 30252
This theorem is referenced by:  1stmbfm  30322  2ndmbfm  30323
  Copyright terms: Public domain W3C validator