| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrriv | Structured version Visualization version Unicode version | ||
| Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| eqbrriv.1 |
|
| eqbrriv.2 |
|
| eqbrriv.3 |
|
| Ref | Expression |
|---|---|
| eqbrriv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrriv.1 |
. 2
| |
| 2 | eqbrriv.2 |
. 2
| |
| 3 | eqbrriv.3 |
. . 3
| |
| 4 | df-br 4654 |
. . 3
| |
| 5 | df-br 4654 |
. . 3
| |
| 6 | 3, 4, 5 | 3bitr3i 290 |
. 2
|
| 7 | 1, 2, 6 | eqrelriiv 5214 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: resco 5639 tpostpos 7372 sbthcl 8082 dfle2 11980 dflt2 11981 idsset 31997 dfbigcup2 32006 imageval 32037 |
| Copyright terms: Public domain | W3C validator |