| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imageval | Structured version Visualization version Unicode version | ||
| Description: The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| imageval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimage 32035 |
. . 3
| |
| 2 | funrel 5905 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | mptrel 5248 |
. 2
| |
| 5 | vex 3203 |
. . . . 5
| |
| 6 | vex 3203 |
. . . . 5
| |
| 7 | 5, 6 | breldm 5329 |
. . . 4
|
| 8 | fnimage 32036 |
. . . . 5
| |
| 9 | fndm 5990 |
. . . . 5
| |
| 10 | 8, 9 | ax-mp 5 |
. . . 4
|
| 11 | 7, 10 | syl6eleq 2711 |
. . 3
|
| 12 | 5, 6 | breldm 5329 |
. . . 4
|
| 13 | eqid 2622 |
. . . . . 6
| |
| 14 | 13 | dmmpt 5630 |
. . . . 5
|
| 15 | rabab 3223 |
. . . . 5
| |
| 16 | 14, 15 | eqtri 2644 |
. . . 4
|
| 17 | 12, 16 | syl6eleq 2711 |
. . 3
|
| 18 | imaeq2 5462 |
. . . . . 6
| |
| 19 | 18 | eleq1d 2686 |
. . . . 5
|
| 20 | 5, 19 | elab 3350 |
. . . 4
|
| 21 | 5, 6 | brimage 32033 |
. . . . 5
|
| 22 | eqcom 2629 |
. . . . . 6
| |
| 23 | 18, 13 | fvmptg 6280 |
. . . . . . . . 9
|
| 24 | 5, 23 | mpan 706 |
. . . . . . . 8
|
| 25 | 24 | eqeq1d 2624 |
. . . . . . 7
|
| 26 | funmpt 5926 |
. . . . . . . . 9
| |
| 27 | df-fn 5891 |
. . . . . . . . 9
| |
| 28 | 26, 16, 27 | mpbir2an 955 |
. . . . . . . 8
|
| 29 | 20 | biimpri 218 |
. . . . . . . 8
|
| 30 | fnbrfvb 6236 |
. . . . . . . 8
| |
| 31 | 28, 29, 30 | sylancr 695 |
. . . . . . 7
|
| 32 | 25, 31 | bitr3d 270 |
. . . . . 6
|
| 33 | 22, 32 | syl5bb 272 |
. . . . 5
|
| 34 | 21, 33 | syl5bb 272 |
. . . 4
|
| 35 | 20, 34 | sylbi 207 |
. . 3
|
| 36 | 11, 17, 35 | pm5.21nii 368 |
. 2
|
| 37 | 3, 4, 36 | eqbrriv 5215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-symdif 3844 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-eprel 5029 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 df-txp 31961 df-image 31971 |
| This theorem is referenced by: fvimage 32038 |
| Copyright terms: Public domain | W3C validator |