MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqerOLD Structured version   Visualization version   Unicode version

Theorem eqerOLD 7778
Description: Obsolete proof of eqer 7777 as of 1-May-2021. Equivalence relation involving equality of dependent classes  A ( x ) and  B
( y ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eqer.1  |-  ( x  =  y  ->  A  =  B )
eqer.2  |-  R  =  { <. x ,  y
>.  |  A  =  B }
Assertion
Ref Expression
eqerOLD  |-  R  Er  _V
Distinct variable groups:    x, y    y, A    x, B
Allowed substitution hints:    A( x)    B( y)    R( x, y)

Proof of Theorem eqerOLD
Dummy variables  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqer.2 . . . . 5  |-  R  =  { <. x ,  y
>.  |  A  =  B }
21relopabi 5245 . . . 4  |-  Rel  R
32a1i 11 . . 3  |-  ( T. 
->  Rel  R )
4 id 22 . . . . . 6  |-  ( [_ z  /  x ]_ A  =  [_ w  /  x ]_ A  ->  [_ z  /  x ]_ A  = 
[_ w  /  x ]_ A )
54eqcomd 2628 . . . . 5  |-  ( [_ z  /  x ]_ A  =  [_ w  /  x ]_ A  ->  [_ w  /  x ]_ A  = 
[_ z  /  x ]_ A )
6 eqer.1 . . . . . 6  |-  ( x  =  y  ->  A  =  B )
76, 1eqerlem 7776 . . . . 5  |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A
)
86, 1eqerlem 7776 . . . . 5  |-  ( w R z  <->  [_ w  /  x ]_ A  =  [_ z  /  x ]_ A
)
95, 7, 83imtr4i 281 . . . 4  |-  ( z R w  ->  w R z )
109adantl 482 . . 3  |-  ( ( T.  /\  z R w )  ->  w R z )
11 eqtr 2641 . . . . 5  |-  ( (
[_ z  /  x ]_ A  =  [_ w  /  x ]_ A  /\  [_ w  /  x ]_ A  =  [_ v  /  x ]_ A )  ->  [_ z  /  x ]_ A  =  [_ v  /  x ]_ A )
126, 1eqerlem 7776 . . . . . 6  |-  ( w R v  <->  [_ w  /  x ]_ A  =  [_ v  /  x ]_ A
)
137, 12anbi12i 733 . . . . 5  |-  ( ( z R w  /\  w R v )  <->  ( [_ z  /  x ]_ A  =  [_ w  /  x ]_ A  /\  [_ w  /  x ]_ A  = 
[_ v  /  x ]_ A ) )
146, 1eqerlem 7776 . . . . 5  |-  ( z R v  <->  [_ z  /  x ]_ A  =  [_ v  /  x ]_ A
)
1511, 13, 143imtr4i 281 . . . 4  |-  ( ( z R w  /\  w R v )  -> 
z R v )
1615adantl 482 . . 3  |-  ( ( T.  /\  ( z R w  /\  w R v ) )  ->  z R v )
17 vex 3203 . . . . 5  |-  z  e. 
_V
18 eqid 2622 . . . . . 6  |-  [_ z  /  x ]_ A  = 
[_ z  /  x ]_ A
196, 1eqerlem 7776 . . . . . 6  |-  ( z R z  <->  [_ z  /  x ]_ A  =  [_ z  /  x ]_ A
)
2018, 19mpbir 221 . . . . 5  |-  z R z
2117, 202th 254 . . . 4  |-  ( z  e.  _V  <->  z R
z )
2221a1i 11 . . 3  |-  ( T. 
->  ( z  e.  _V  <->  z R z ) )
233, 10, 16, 22iserd 7768 . 2  |-  ( T. 
->  R  Er  _V )
2423trud 1493 1  |-  R  Er  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   _Vcvv 3200   [_csb 3533   class class class wbr 4653   {copab 4712   Rel wrel 5119    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-er 7742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator