MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqerlem Structured version   Visualization version   Unicode version

Theorem eqerlem 7776
Description: Lemma for eqer 7777. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
eqer.1  |-  ( x  =  y  ->  A  =  B )
eqer.2  |-  R  =  { <. x ,  y
>.  |  A  =  B }
Assertion
Ref Expression
eqerlem  |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A
)
Distinct variable groups:    x, w, y    x, z, y    y, A    x, B
Allowed substitution hints:    A( x, z, w)    B( y, z, w)    R( x, y, z, w)

Proof of Theorem eqerlem
StepHypRef Expression
1 eqer.2 . . 3  |-  R  =  { <. x ,  y
>.  |  A  =  B }
21brabsb 4986 . 2  |-  ( z R w  <->  [. z  /  x ]. [. w  / 
y ]. A  =  B )
3 vex 3203 . . 3  |-  z  e. 
_V
4 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ z  /  x ]_ A
5 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ w  /  x ]_ A
64, 5nfeq 2776 . . . 4  |-  F/ x [_ z  /  x ]_ A  =  [_ w  /  x ]_ A
7 vex 3203 . . . . . 6  |-  w  e. 
_V
8 nfv 1843 . . . . . . 7  |-  F/ y  A  =  [_ w  /  x ]_ A
9 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
10 eqer.1 . . . . . . . . . 10  |-  ( x  =  y  ->  A  =  B )
119, 10csbie 3559 . . . . . . . . 9  |-  [_ y  /  x ]_ A  =  B
12 csbeq1 3536 . . . . . . . . 9  |-  ( y  =  w  ->  [_ y  /  x ]_ A  = 
[_ w  /  x ]_ A )
1311, 12syl5eqr 2670 . . . . . . . 8  |-  ( y  =  w  ->  B  =  [_ w  /  x ]_ A )
1413eqeq2d 2632 . . . . . . 7  |-  ( y  =  w  ->  ( A  =  B  <->  A  =  [_ w  /  x ]_ A ) )
158, 14sbciegf 3467 . . . . . 6  |-  ( w  e.  _V  ->  ( [. w  /  y ]. A  =  B  <->  A  =  [_ w  /  x ]_ A ) )
167, 15ax-mp 5 . . . . 5  |-  ( [. w  /  y ]. A  =  B  <->  A  =  [_ w  /  x ]_ A )
17 csbeq1a 3542 . . . . . 6  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
1817eqeq1d 2624 . . . . 5  |-  ( x  =  z  ->  ( A  =  [_ w  /  x ]_ A  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A
) )
1916, 18syl5bb 272 . . . 4  |-  ( x  =  z  ->  ( [. w  /  y ]. A  =  B  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A ) )
206, 19sbciegf 3467 . . 3  |-  ( z  e.  _V  ->  ( [. z  /  x ]. [. w  /  y ]. A  =  B  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A ) )
213, 20ax-mp 5 . 2  |-  ( [. z  /  x ]. [. w  /  y ]. A  =  B  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
222, 21bitri 264 1  |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   [_csb 3533   class class class wbr 4653   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713
This theorem is referenced by:  eqer  7777  eqerOLD  7778
  Copyright terms: Public domain W3C validator